999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

廣義KdV-Burgers方程的勢對稱和不變解

2013-07-05 14:33:33朱永平吉飛宇陳曉艷
純粹數學與應用數學 2013年2期
關鍵詞:數學方法

朱永平,吉飛宇,陳曉艷

(1.西北大學數學系,陜西西安 710127;2.西安建筑科技大學理學院,陜西西安 710055)

廣義KdV-Burgers方程的勢對稱和不變解

朱永平1,吉飛宇2,陳曉艷1

(1.西北大學數學系,陜西西安 710127;2.西安建筑科技大學理學院,陜西西安 710055)

用微分形式的吳方法討論了廣義KdV-Burgers方程不同系數情況下的勢對稱,并且利用這些對稱求得了相應的不變解,這些解對進一步研究廣義KdV-Burgers方程所描述的物理現象具有重要意義.

KdV-Burgers方程;微分形式的吳方法;勢對稱;不變解

1 引言

偏微分方程的對稱理論和方法[1]是以求解線性微分方程的變量分離法,Fourier級數法及積分變換等為其特例的普適性方法,在求精確解和對稱約化方面具有廣泛的應用[23].由于古典對稱方法在構造微分方程的對稱中存在一定的局限性,因此,1981年Perk和Schultz提出了超對稱,1994年Zhdanow和Fokas以及Liu提出了廣義條件對稱等,這些均是對古典對稱的推廣.1989年,Bluman提出的勢對稱理論[4]是擴充方程(組)對稱的簡便有效方法.近期,有許多學者致力于某些重要的非線性偏微分方程的勢對稱及不變解的研究,得到了許多重要成果[5-7].

在物理學中是一類非常重要的非線性波動方程,可看作是Burgers方程及Kuramoro-Sivashinsky方程組合的一種簡單耗散模型.該類方程的很多理論結果受到了廣泛關注[911].本文采用微分形式的吳方法[12]作為輔助計算,對KdV-Burgers方程的勢對稱和不變解進行了研究,將方程中系數的各種情況分類討論,獲得了與以往文獻不同的勢對稱和不變解,并且大大降低了求解確定方程組的難度.

2 廣義KdV-Burgers方程的勢對稱和不變解

2.1 基本理論

假設給定方程的自變量是x,t,其中u=u(x,t)是未知函數,并且該方程可以寫成守恒形式:

引入勢變量v,得到方程(2)的輔助系統:

設輔助系統的(3)的古典對稱向量為:

2.2 廣義KdV-Burgers方程的勢對稱和不變解

將方程(1)寫成守恒形式:

引入勢變量v,得到相應的輔助系統:

設方程組(6)對應的古典對稱向量為:

下面對方程組(6)的系數α,β,γ分八種情形進行討論.

情形1α/=0,β/=0,γ/=0.

用微分形式的吳方法計算得到(6)式的確定方程組為:

3 結論

本文利用微分形式的吳方法計算了廣義KdV-Burgers方程在不同系數情況下的勢對稱,并且求得了對應的不變解,獲得了與以往文獻不同的結果.這對進一步研究廣義KdVBurgers方程具有重要的意義.對于可寫成守恒形式的微分方程在什么樣的情況下允許勢對稱,有待于繼續研究.

[1]Peter J Olver.Applications of Lie Groups to Differential Equations[M].New York:Spring-Verlag,1986.

[2]王珍,吉飛宇.mKdV方程的對稱和群不變解[J].純粹數學與應用數學,2011,27(6):778-780.

[3]姬利娜,張穎.多孔介質方程的廣義條件對稱和精確解[J].純粹數學與應用數學,2011,27(3):339-342.

[4]George W Bluman,Sukeyuki Kumei.Symmetries and Integration Methods for Differential Equations[M]. New York:Spring-Verlag,1989.

[5]Gandarias M L.New potential symmetries for some evolution equations[J].Physica A,2008,387(10):2234-2242.

[6]張紅霞,鄭麗霞.Benney方程的勢對稱和不變解[J].動力與控制學報,2008,6(3):220-222.

[7]饒云高,朝魯.廣義KdV-Burgers方程新形勢下的勢對稱分類[J].內蒙古工業大學學報,2012,31(1):1-6.

[8]郭柏靈.一類更廣泛的Kdv方程的整體解[J].數學學報,1982,25(6):641-656.

[9]Ablowitz M J.Clarkson P A.Solitons,Nonlinear Evolution Equations and Inverse Scatting[M].New York: Cambridge University Press,1991.

[10]Zhang S L,Wang Y,Lou S Y.Approximate generalized conditional symmetries for perturbed evolution equations[J].Commu.Theor.Phys.,2007,47(6):975-980.

[11]Zhang S L,Li J N.Initial-value problem for extended KdV-Burgers equations via generalized conditional symmetries[J].Chinese Physics Letters,2007,24(6):1433-1436.

[12]朝魯.微分方程(組)對稱向量的吳-微分特征列算法及其應用[J].數學物理學報,1999,19(3):326-332.

Potential symmetries and invariant solutions of generalized KdV-Burgers equation

Zhu Yongping1,Ji feiyu2,Chen Xiaoyan1
(1.Department of Mathematics,Northewest University,Xi′an710127,China; 2.School of Science,Xi′an University of Architecture and Technology,Xi′an710055,China)

In this paper,the symmetries of generalized KdV-Burgers equation with different coefficients are discussed with the help of Wu′s method in differential forms.And new potential symmetries are obtained. Furthermore,the corresponding invariant solutions can be obtained by using the above symmetries.The solutions have are of great importance to further researching the physical phenomena described by generalized KdVBurgers equation.

KdV-Burgers equation,Wu′s method in differential forms,potential symmetries, invariant solutions

O175.2

A

1008-5513(2013)02-0164-08

10.3969/j.issn.1008-5513.2013.02.009

2012-11-22.

國家自然科學基金(10671156).

朱永平(1986-),碩士生,研究方向:偏微分方程.

2010 MSC:35Q53

猜你喜歡
數學方法
我們愛數學
學習方法
我為什么怕數學
新民周刊(2016年15期)2016-04-19 18:12:04
數學到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
用對方法才能瘦
Coco薇(2016年2期)2016-03-22 02:42:52
四大方法 教你不再“坐以待病”!
Coco薇(2015年1期)2015-08-13 02:47:34
賺錢方法
捕魚
數學也瘋狂
錯在哪里
主站蜘蛛池模板: 色成人亚洲| 毛片免费高清免费| 欧美另类精品一区二区三区| 久久久久人妻一区精品色奶水| 亚洲一欧洲中文字幕在线| 天天激情综合| 国产欧美日韩18| 素人激情视频福利| 91福利免费视频| 亚洲国产清纯| 99久久国产综合精品2023| 国产毛片不卡| 免费xxxxx在线观看网站| 五月婷婷欧美| 亚洲无码视频一区二区三区| 国产毛片片精品天天看视频| 国产精品性| 亚洲精品免费网站| 麻豆精品在线视频| 国产激情无码一区二区APP| 热久久综合这里只有精品电影| 99久视频| 福利在线不卡一区| 亚洲欧州色色免费AV| 久久无码av一区二区三区| 欧美α片免费观看| av一区二区三区高清久久| 欧美中文字幕无线码视频| 天天视频在线91频| 国产剧情国内精品原创| 伦精品一区二区三区视频| 亚洲成aⅴ人在线观看| 成人精品午夜福利在线播放| 五月婷婷欧美| 午夜啪啪网| 国产一区成人| 青草免费在线观看| 狠狠做深爱婷婷综合一区| 亚洲欧洲日产国产无码AV| 国产青榴视频| 在线色国产| 国产噜噜在线视频观看| 青青操视频在线| 国产一区二区三区免费观看| 人妻少妇乱子伦精品无码专区毛片| 日日噜噜夜夜狠狠视频| 欧美日在线观看| 欧美日韩亚洲国产主播第一区| 欧美精品aⅴ在线视频| 国产精品亚洲va在线观看 | 欧美一级视频免费| av天堂最新版在线| 亚洲黄网在线| 色窝窝免费一区二区三区 | 国产微拍一区二区三区四区| 中国国产高清免费AV片| 天堂av高清一区二区三区| 亚洲美女一级毛片| 欧美精品一二三区| 朝桐光一区二区| 亚洲一级毛片免费观看| 一区二区三区四区精品视频 | 亚洲,国产,日韩,综合一区| 亚洲激情99| 爆乳熟妇一区二区三区| 精品亚洲国产成人AV| 精品视频免费在线| 91久久国产成人免费观看| 国产极品美女在线| 成人毛片在线播放| 91久久偷偷做嫩草影院| 日韩成人高清无码| 中文字幕欧美成人免费| 国产精品专区第1页| 亚洲欧美综合在线观看| 中文字幕在线播放不卡| 午夜成人在线视频| 亚洲国产欧美国产综合久久 | 九九久久精品国产av片囯产区| 亚洲精品人成网线在线| 精品无码国产一区二区三区AV| 亚洲91在线精品|