郭丹丹,陳 姬,于拔萃,張 波,鄭秋生
(1.石河子大學藥學院藥理系,新疆石河子,832002;2.新疆特種植物藥資源教育部重點實驗室,新疆石河子,832002)
浸潤和轉移是惡性腫瘤的一個重要特征,也是導致腫瘤患者死亡的主要原因。近年來,惡性黑色素瘤的發病率在世界范圍內具有逐步增高的趨勢。在我國,雖然惡性黑色素瘤的發病率較低,但預后較差,且極易發生遠處轉移[1]。因此,在治療過程中,控制其轉移是關鍵。芪類(stilbenes)物質是一類植物苯丙素次生代謝途徑的主要產物,由于其廣泛的生物學活性,近年來吸引了眾多研究者的關注。白藜蘆醇(resveratrol)具有抗菌、抗癌、抗炎、抗過敏、降血脂和抗氧化等多方面的藥理活性[2],近年來其抗腫瘤活性受到關注[3-5]。白藜蘆醇不僅可以抑制多發性骨髓瘤和宮頸癌等惡性腫瘤細胞基質金屬蛋白酶(matrix metalloproteinase,MMP)的表達[6],還可通過激動過氧化物酶體增殖物激活受體減少細胞外MMP誘導因子的表達,抑制腫瘤細胞轉移[7]。紫檀芪(pterostilbene)作為白藜蘆醇的甲基化衍生物近年來也受到關注,紫檀芪具有和白藜蘆醇相似的抗腫瘤活性[8-9]。本研究觀察這兩種芪類化合物抗腫瘤轉移作用并進行比較。
小鼠黑色素瘤細胞B16F1和內皮細胞ECV304購于上海生命科學院細胞資源中心。白藜蘆醇和紫檀芪(純度分別為98%和97%)以及胰蛋白酶、磺基羅丹明B和DMSO均購自Sigma公司。RPMI 1640和DMEM細胞培養基購于Gibco公司;新生牛血清和胎牛血清購于杭州四季青生物工程有限公司;Matrigel膠購于美國 BD公司;MMP-2 ELISA試劑盒購于武漢博士德生物工程有限公司;Thermo3131型CO2培養箱和Thermo 3001型多功能酶標儀,美國Thermo公司;ZHJH-112B型超凈工作臺,上海智誠分析儀器有限公司;MIC00266型熒光倒置顯微鏡,德國Zeiss公司;H.H.S精密恒溫水浴鍋,江蘇金壇市醫療儀器廠;TGL20M臺式高速冷凍離心機,湖南凱達科學儀器有限公司。
以DMSO溶解白藜蘆醇和紫檀芪,用無血清RPMI 1640培養基配制白藜蘆醇 0.44 mmol·L-1和紫檀芪 0.39 mmol·L-1的貯存液,-4℃避光保存備用。處理細胞時再用RPMI 1640培養液稀釋為工作濃度,其中DMSO終濃度小于0.01%。
取對數生長期的細胞,調整細胞為5×107L-1,按每孔100 μl加于96孔培養板中,于恒溫培養箱中孵育24 h。細胞貼壁約80%,每孔分別加入預先配置好的白藜蘆醇和紫檀芪溶液100 μl,終濃度均為0,5,10,20,30,40 和50 μmol·L-1,對照組加入等體積含0.01%DMSO的RPMI 1640培養液,每個濃度設6個復孔,繼續培養48 h,棄上清,4℃固定1 h,純水洗滌,每孔加入100 μl磺基羅丹明B染液,靜置 20 min,1%乙酸洗滌,每孔再加入DMSO 150 μl,在搖床上震蕩混勻,用酶標儀于波長490 nm處檢測各孔吸光度(A)值。細胞增殖抑制率(%)=(A對照組-A給藥組)/A對照組×100%。
白藜蘆醇和紫檀芪 10 μmol·L-1對細胞增殖無明顯影響。為此選擇該濃度觀察其抗腫瘤轉移和抑制血管新生的作用。劃痕后培養基中不含血清,細胞基本不增殖,劃痕愈合完全靠細胞的遷移運動,愈合面積代表腫瘤細胞的遷移運動能力。按照Fishman等[10]方法,取對數生長期 B16F1 和ECV304細胞,接種于48孔培養板,至細胞長到90% 融合度,以200 μl Tip頭均勻劃痕,用含0.1%小牛血清的培養液輕輕洗去脫落細胞,分別加入白藜蘆醇和紫檀芪溶液,終濃度為 10 μmol·L-1,5%CO2,37℃孵育48 h至正常組劃痕基本愈合。用Zeiss倒置顯微鏡拍照并分析。以劃痕面積為基準,愈合后取與劃痕區域相同面積,采用Photoshop 6.0軟件分別測定劃痕愈合前后的劃痕區域灰度值,計算劃痕愈合率。劃痕愈合率(%)=(0 h劃痕區灰度值-48 h劃痕區灰度值)/0 h劃痕區灰度值×100%。
按照 Lalu等[11]方法測定。取對數生長期B16F1細胞,計數后以相同細胞數接種于培養瓶中,在培養箱中培養24 h,加入預先用無血清RPMI 1640培養基配制的白藜蘆醇和紫檀芪溶液,終濃度均為10 μmol·L-1,培養 48 h 后,收集上清液,用考馬斯亮藍法測定上清液中蛋白質濃度,將每組樣品稀釋至相同蛋白質濃度。制備聚丙烯酰胺凝膠,加樣20 μl,于濃縮膠(60 V,40 min)和分離膠(80 V,150 min)電泳。分離膠中約含明膠0.1%。電泳結束后,室溫洗滌復性2 h。再于37℃搖床上孵育36 h。孵育結束后,用考馬斯亮藍染色液染色30 min,脫色液脫色至膠條呈藍色均一背景,亮白色條帶。拍照,并用Gel-PRO Analyzer軟件(Media Cybernetics,USA)分析相同面積區域的積分灰度值。MMP-2活性用與對照組比較灰度值的百分比表示。
用MMP-2 ELISA試劑盒測定MMP-2蛋白表達。取對數生長期B16F1細胞,計數后以相同細胞數接種于培養瓶中,在培養箱中培養24 h,加入預先用無血清RPMI 1640培養基配制的白藜蘆醇和紫檀芪溶液,終濃度均為 10 μmol·L-1,培養 48 h后,收集上清液,按照試劑盒說明操作,每樣品設6個復孔,結果用A450nm表示。
參照 Mezentsev 等[12]方法,將 Matrigel膠 4℃過夜溶解,將 Matrigel膠與預冷的無血清 RPMI 1640培養基1∶5(V/V)混合,用預冷的槍頭混勻,加入到24孔培養板,每孔200 μl,置37℃培養箱中30 min促凝,用無血清 RPMI 1640培養液將ECV304 細胞調至1.0 ×105L-1,每孔1.0 ml接種于Matrigel膠層,37℃孵育1 h,用無血清 RPMI 1640培養液洗滌除去未貼壁細胞,加入用無血清RPMI 1640培養基配制的白藜蘆醇和紫檀芪溶液,終濃度為10 μmol·L-1,每濃度設 2 個復孔,共同孵育20 h。顯微鏡觀察管腔狀結構形成情況并拍照。
由圖1看出,白藜蘆醇與紫檀芪可抑制B16F1和 ECV304 細胞增殖,在 20~50 μmol·L-1濃度范圍內紫檀芪對B16F1和ECV304細胞增殖的抑制率高于白藜蘆醇(P<0.05,P<0.01)。經計算,作用48 h,白藜蘆醇和紫檀芪抑制B16F1細胞增殖的 IC50分別為 119.7 μmol·L-1和 37.3 μmol·L-1,抑制 ECV304 細胞增殖的 IC50分別為72.2 μmol·L-1和37.2 μmol·L-1。

Fig.1 Effect of resveratrol and pterostilbene on proliferation of B16F1(A)and ECV304 cells(B).B16F1 and ECV304 cells were incubated with resveratrol and pterostilbene for 48 h, respectively. The cell proliferation was determined by sulforhodamine B assay.Inhibitory rate(%)=(A490 nmof control group-A490 nmof control group)/A490 nmof control group×100%.±s,n=6.*P<0.05,**P<0.01,compared with the same concentration of resveratrol group.
與正常對照組相比,白藜蘆醇和紫檀芪10 μmol·L-1均可降低 B16F1 和ECV304 細胞的劃痕愈合率(P<0.05,P<0.01);對于同一種細胞,紫檀芪的抑制作用強于白藜蘆醇(P<0.01)。圖2和圖3結果表明,白藜蘆醇和紫檀芪均可降低B16F1和ECV304細胞的體外遷移能力,而且同濃度下紫檀芪抑制細胞遷移的能力明顯強于白藜蘆醇。

Fig.2 Inhibition of resveratrol and pterostilbene on migration of B16F1 cells in vitro.A:confluent monolayers of cells were wounded with a uniform scratch,rinsed to remove debris,and incubated with resveratrol or pterostilbene 10 μmol·L -1for 48 h.Photographs were monitored by ZEISS microscope(×100).a1,a2 and a3:normal control,resveratrol and pterostilbene groups before incubation;a4,a5 and a6:normal control,resveratrol and pterostilbene groups incubated for 48 h.B:semi-quantitative result of wound closure ability.Relative wound closure ability was determined by measuring the greyscale of the wounds.Wound closure rate(%)=(wound district grey value at 0 hwound district grey value at 48 h)/wound district grey value at 0 h×100%.±s,n=6.**P<0.01,compared with normal control group;##P<0.01,compared with resveratrol group.
圖4 結果顯示,與正常對照組比較,白藜蘆醇和紫檀芪 10 μmol·L-1與 B16F1 細 胞 作 用 48 h MMP-2活性明顯降低(P<0.01),紫檀芪比白藜蘆醇降低更為明顯(P<0.01),表明白藜蘆醇和紫檀芪可降低B16F1細胞分泌MMP-2的活性,且紫檀芪明顯強于白藜蘆醇。

Fig.3 Inhibition of resveratrol and pterostilbene on migration of ECV304 cells in vitro.See Fig.2 for the cell treatment.a1,a2 and a3:normal control,resveratrol and pterostilbene groups before incubation;a4,a5 and a6:normal control,resveratrol and pterostilbene groups incubated for 48 h.±s,n=6.*P<0.05,**P<0.01,compared with normal control group;##P<0.01,compared with resveratrol group.

Fig.4 Effect of resveratrol and pterostilbene on matrix metalloproteinase-2(MMP-2)activity of B16F1 cells.See Fig.2 for the cell treatment.MMP-2 activity was determined by gelatin zymography(A).Lane 1:control group;lane 2:reveratrol group;lane 3:pterostilbene group.B was the semi-quantitative result of A.MMP-2 activity was expressed as the percentage of grey value to the control group(B).±s,n=6.**P<0.01,compared with normal control group;##P<0.01,compared with resveratrol group.
MMP-2 ELISA檢測結果(圖5)表明,與正常對照組比較,白藜蘆醇和紫檀芪 10 μmol·L-1可降低B16F1細胞MMP-2表達(P<0.01),紫檀芪的作用強于白藜蘆醇(P<0.01)。

Fig.5 Effect of resveratrol and pterostilbene on MMP-2 expression of B16F1 cells.See Fig.2 for the cell treatment.MMP-2 expression was detected by ELISA kit.±s,n=6.**P<0.01,compared with normal control group;##P<0.01,compared with resveratrol group.

Fig.6 Effect of resveratrol and pterostilbene on tube formation of ECV304 cells in vitro(40×).A:control group;B:resveratrol 10 μmol·L-1for 24 h;C:pterostilbene 10 μmol·L-1for 24 h.
圖6 結果表明,正常對照組內皮細胞ECV304可在Matrigel膠重建的基底膜上形成完整的擬管腔狀結構(圖6A);白藜蘆醇 10 μmol·L-1組 ECV304 細胞拉伸程度降低,彼此間連接縫隙變大,部分管腔狀結構的完整性被破壞(圖 6B);紫檀芪 10 μmol·L-1組ECV304細胞連接處已經逐漸變圓,管腔狀結構已經完全被破壞(圖6C)。表明白藜蘆醇和紫檀芪均能有效抑制內皮細胞擬管腔樣結構的形成,且紫檀芪的抑制強于白藜蘆醇。
本研究結果表明,白藜蘆醇與紫檀芪20~50 μmol·L-1作用 48 h 可抑制 B16F1 和 ECV304細胞增殖。在相同濃度條件下,紫檀芪對B16F1和ECV304細胞增殖的抑制率高于白藜蘆醇。
浸潤和侵襲是惡性腫瘤轉移的前提,MMP是腫瘤細胞降解基底膜的重要成分,高侵襲轉移潛能的腫瘤細胞其MMP mRNA和蛋白均高水平表達,而且高轉移腫瘤細胞誘導宿主間質細胞產生MMP的能力遠遠大于低轉移腫瘤細胞,在參與破壞基底膜的MMP中,相對分子質量為72×103的MMP-2與腫瘤細胞的侵襲和轉移關系密切,MMP-2表達增加能促進細胞的侵襲能力[13]。明膠酶譜法和ELISA實驗結果表明,白藜蘆醇和紫檀芪可降低腫瘤細胞分泌的MMP-2活性和表達。劃痕實驗發現,處理后的腫瘤細胞遷移能力也明顯受到抑制。由此提示,白藜蘆醇和紫檀芪均具有明顯抑制B16F1和ECV304細胞遷移的能力,提示芪類物質有潛在的抗腫瘤轉移活性成分。
另一方面,腫瘤轉移過程,不單單是腫瘤細胞自身特性發生變化,還依賴于腫瘤細胞與間質細胞以及細胞微環境之間的相互作用。除了腫瘤細胞本身的運動性,還有腫瘤細胞與毛細血管內皮細胞等因素均可影響腫瘤細胞轉移。越來越多的研究表明,血管新生不僅在腫瘤生長和轉移中發揮重要作用,而且腫瘤內新生血管也能成為判斷腫瘤預后的獨立指標[14-15]。白藜蘆醇和紫檀芪均能抑制內皮細胞的生長和遷移,同時對內皮細胞擬管腔結構形成有抑制作用,且紫檀芪的作用優于白藜蘆醇。上述結果提示,白藜蘆醇和紫檀芪具有抗腫瘤轉移作用,相同濃度條件下紫檀芪的作用高于白藜蘆醇。
[1]O'Day SJ,Kim CJ,Reintgen DS.Metastatic melanoma:chemotherapy to biochemotherapy[J].Cancer Control,2002,9(1):31-38.
[2]Baur JA,Sinclair DA.Therapeutic potential of resveratrol:the in vivo evidence[J].Nat Rev Drug Discov,2006,5(6):493-506.
[3]Burns J,Yokota T,Ashihara H,Lean ME,Crozier A.Plant foods and herbal sources of resveratrol[J].J Agric Food Chem,2002,50(11):3337-3340.
[4]Jang M,Cai L,Udeani GO,Slowing KV,Thomas CF,Beecher CW,et al.Cancer chemopreventive activity of resveratrol,a natural product derived from grapes[J].Science,1997,275(5297):218-220.
[5]Clément MV,Hirpara JL,Chawdhury SH,Pervaiz S.Chemopreventive agent resveratrol,a natural product derived from grapes,triggers CD95 signaling-dependent apoptosis in human tumor cells[J].Blood,1998,92(3):996-1002.
[6]Woo JH,Lim JH,Kim YH,Suh SI,Min DS,Chang JS,et al.Resveratrol inhibits phorbol myristate acetate-induced matrix metalloproteinase-9 expression by inhibiting JNK and PKC delta signal transduction[J].Oncogene,2004,23(10):1845-1853.
[7]Tang Y,Kesavan P,Nakada MT,Yan L.Tumor-stroma interaction:positive feedback regulation of extracellular matrix metalloproteinase inducer(EMMPRIN)expression and matrix metalloproteinase-dependent generation of soluble EMMPRIN[J].Mol Cancer Res,2004,2(2):73-80.
[8]Li Z,Zhan W,Wang Z,Zhu B,He Y,Peng J,et al.Inhibition of PRL-3 gene expression in gastric cancer cell line SGC7901 via microRNA suppressed reduces peritoneal metastasis[J].Biochem Biophys Res Commun,2006,348(1):229-237.
[9]Rimando AM,Cuendet M,Desmarchelier C,Mehta RG,Pezzuto JM,Duke SO.Cancer chemopreventive and antioxidant activities of pterostilbene,a naturally occurring analogue of resveratrol[J].J Agric Food Chem,2002,50(12):3453-3457.
[10]Fishman DA, Kearns A, Chilukuri K, Bafetti LM,O'Toole EA,Georgacopoulos J,et al.Metastatic dissemination of human ovarian epithelial carcinoma is promoted by alpha2beta1-integrin-mediated interaction with typeⅠcollagen[J].Invasion Metastasis,1998,18(1):15-26.
[11]Lalu MM,Csonka C,Giricz Z,Csont T,Schulz R,Ferdinandy P.Preconditioning decreases ischemia/reperfusioninduced release and activation of matrix metalloproteinase-2[J].Biochem Biophys Res Commun,2002,296(4):937-941.
[12]Mezentsev A,Seta F,Dunn MW,Ono N,Falck JR,Laniado-Schwartzman M.Eicosanoid regulation of vascular endothelial growth factor expression and angiogenesis in microvessel endothelial cells[J].J Biol Chem,2002,277(21):18670-18676.
[13]Egeblad M,Werb Z.New functions for the matrix metalloproteinases in cancer progression[J].Nat Rev Cancer,2002,2(3):161-174.
[14]Bamias A,Dimopoulos MA.Angiogenesis in human cancer:implications in cancer therapy[J].Eur J Intern Med,2003,14(8):459-469.
[15]Kubota Y,Kleinman HK,Martin GR,Lawley TJ.Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures[J].J Cell Biol,1988,107(4):1589-1598.