999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Analytical and numerical stability analysis ofnonlinear generalized delay differentialequations with variable delay terms

2013-12-18 10:40:36JIANGChengxiang

JIANG Chengxiang

(Tianhua College,Shanghai Normal University,Shanghai 201815,China)

1 Introduction

Delay differential equations provide a powerful model of many phenomena in applied sciences such as physics,engineering,biology, and economics.In this paper,we consider the stability behavior of the analytical and numerical solutions of the system of generalized delay differential equation with variable delay terms:

(1)

wheref:[0,+∞)×Cd×Cd→Cd,φdenote given complex functions, andy(tτ)=(y1(t-τ1(t)),y2(t-τ2(t)),…,yd(t-τd(t)))T,andτi(t) (i=1,2,…,d) are continuous differential functions satisfing the following hypothese:

(H1)τi(t)≥τj(t)≥τ0>0(i>j),for allt≥t0.

The stability properties of the numerical methods for linear delay differential equations have been widely studied by many authors[1-6].In [7-9],Cong etc.investigated the stability properties of numerical methods for linear generalized delay differential equation with a variable lag (GDDEs).Because of the complexity of nonlinearGDDEs,there were no papers dealing with it.

In this paper,a sufficient condition for the asymptotical stability of the theoretical solution of (1) is discussed.Then,we investigate the numerical stability of Runge-Kutta methods for systems ofGDDEs.A numerical test at the end of this paper confirms our theoretical results.

2 Stability of analytical solution

(2)

(3)

wherefis a given mapping which satisfies the following conditions:

?t≥t0,y1,y2,u∈Cd.

(4)

(5)

whereα(t),β(t) are continuous bounded functions.

(6)

Lemma2.1[11]Ifv(t)>0,t∈(-∞,+∞),and

(7)

whereψ(t) is continuous and bounded fort≤t0,A(t),B(t)≥0 fort∈ [t0,+∞)],τ(t)≥0 andt-τ(t)→+∞,ast→+∞,and if there exits aσ>0 such that

-A(t)+B(t)≤-σ<0, fort≥t0,

thenv(t)→0,ast→∞.

Theorem2.1If the systems ofGDDEs(2) and (3) satisfy (4),(5) andα(t)<0,?t≥t0,and

α(t)+β(t)≤-σ<0,

(8)

then the system is asymptotically stable.

Thus we have completed the proof.

3 Numerical stability analysis

We now investigate the stability analysis of the (k,l)-algebraically stable Runge-Kutta methods for nonlinearGDDEs.

Now we consider the adaptation of thes-stage Runge-Kutta methods to (2).

(9)

Similarly,the adaptation of the Runge-Kutta Methods with the same interpolation procedure for the problem (3) leads to the following process:

(10)

Let

(11)

It follows from (9) and (10),that

(12)

Definition3.1Letlbe a real constant.A Runge-Kutta method with aninterpolation procedure is said to beGAR(l)-stable if

(13)

with stepsizehsatisfying (α+β)≤l.

Definition3.2[10]Letk,lbe real constants.An RK method is said to be (k,l)-algebraically stable if there exists a diagonal nonnegative matrixGandD=diag(d1,…,ds) such thatM=(mij) is nonnegative,where

In this paper,we use the linear interpolation procedure.Letτi(tn+cjh)=(imj(n)-iδj(n))hwith integerimj(n)≥1 andδj(n)∈[0,1).

Let

(14)

Theorem3.1Assume that a RK method is (k,l)-algebraically stable,then

(15)

ProofIt is well known[10]that

(16)

Because of the (k,l)-algebraically stability of the method,we have:

(17)

It follows from (4),(5) and (16) that

Theorem3.2Assume that a Runge-Kutta method is (k,l)-algebraically stable andk<1.Then the method with linear interpolation procedure isGAR(l)-stable.

ProofLet

μ=(2α+β)h-2l,

and

The application of Theorem 3.1 yields

By induction,we have

On the other hand,

which shows that the method isGAR(l)-stable.

4 Numerical experiment

We use the classical Runge-Kutta method of order 4 to solveGDDEsfor confirming the theoretical results.

Consider the following generalized delay differential equation:

(18)

and its perturbed problem

(19)

Table 1 Error compared to the computing time t of the RK method for the above equations

:

[1] HU G,MITISUI T.Stability of numerical methods for systems of natural delay differential equations[J].BIT,1995,35(4):504-515.

[2] ZENNARO M.P-stability of runge-kutta methods for delay differential equations[J].Numer Math,1986,49:305-318.

[3] LIU M Z,SPIJKER M N.The stability of a methods in the numerical solution[J].IMA Numer Anal,1990,10(1):31-48.

[4] HALE J.Theory of functional differential equations[M].New York:Spring-Verlag,1997.

[5] HOUT K J.A new interpolation procedure for adapting Runge-Kutta methods for delay differential equations[J].BIT,1992,32:634-649.

[6] KUANG J X,CONG Y H.Stability of numerical methods for delay differential equations[M].Beiing:Science Press,2005.

[7] CONG Y H,ZHANG Y Y,XIANG J X.The GPL-stability of runge-kutta methods for generalized delay diferential system[J].Journal of System Simulation,2005,17(3):587-594.

[8] CONG Y H,XIANG J X.GP-stability ofθ-method for generalized delay differential systems[J].Mathematic Applicata,2005,18(3):497-504.

[9] CONG Y H.NGPG-stability of Linear Multistep Method for Systems of Generalized Neutral Delay Diferential Equations[J].Applied Mathematics and Mechanic,2001,22(7):735-742.

[10] BURRAGE K,BUTCHER J C.Non-linear stability of a general class of differential equation methods[J].BIT,1980,20:185-203.

[11] BAKER C T H,TANG A.Generalized halanay inequalities for volterra functional differential equations and discretized versions[C].UTA Arlington:Volterra Centennial Meeting,1996.

主站蜘蛛池模板: 亚洲欧洲日韩国产综合在线二区| 色偷偷av男人的天堂不卡| 日韩A级毛片一区二区三区| 蜜臀AVWWW国产天堂| 67194亚洲无码| 免费精品一区二区h| 波多野结衣无码视频在线观看| 国产欧美视频在线观看| jizz在线免费播放| 亚洲成人在线网| www亚洲天堂| 99久久精品国产综合婷婷| 中文字幕66页| 茄子视频毛片免费观看| 亚洲日韩在线满18点击进入| 深爱婷婷激情网| 伊人成人在线| 一级黄色网站在线免费看| 人妖无码第一页| 2022精品国偷自产免费观看| 精品一區二區久久久久久久網站| 一区二区无码在线视频| 成人国产小视频| 日本欧美午夜| 欧美综合区自拍亚洲综合天堂| 亚洲手机在线| 91精选国产大片| 亚洲美女一区| 国产aⅴ无码专区亚洲av综合网| 这里只有精品在线播放| 日本高清免费一本在线观看| 自慰网址在线观看| 国产不卡网| 久久综合AV免费观看| 毛片免费高清免费| 久草视频精品| 色综合中文字幕| 天堂中文在线资源| 99青青青精品视频在线| 亚洲第一页在线观看| 国产天天射| 秋霞午夜国产精品成人片| 国产天天射| 亚洲浓毛av| 久久亚洲黄色视频| 久久免费成人| 久久这里只有精品23| 最新日本中文字幕| 色婷婷色丁香| 亚洲无码高清免费视频亚洲| 亚洲精品无码AⅤ片青青在线观看| 制服丝袜 91视频| 色综合综合网| 亚洲性一区| 国产乱人乱偷精品视频a人人澡| 无码专区国产精品一区| 国产成人精品一区二区免费看京| 国产最新无码专区在线| 欧美午夜视频在线| 亚洲天堂网视频| 在线免费a视频| 在线观看国产精品一区| 麻豆精选在线| 色综合网址| 国产日本视频91| 亚洲一区二区三区国产精华液| 精品国产香蕉在线播出| 欧美亚洲香蕉| 好紧好深好大乳无码中文字幕| 国产亚洲欧美日本一二三本道| 中文字幕佐山爱一区二区免费| 日韩高清成人| 国产精品女在线观看| 特级毛片免费视频| 亚洲无限乱码一二三四区| 亚洲综合婷婷激情| 狠狠干综合| 国产欧美日韩18| 亚洲第一中文字幕| 国产精品欧美在线观看| 麻豆精品久久久久久久99蜜桃| 91色在线观看|