王玉香 曾愛源 李清華
(桂林醫學院附屬醫院神經內科,廣西 桂林 541001)
阿爾茨海默病(AD)表現為進行性學習記憶障礙和認知能力下降。其病理特征:大腦細胞外β-淀粉樣蛋白(Aβ)聚集形成老年斑(SP)和細胞內Tau蛋白過磷酸化引起神經纖維纏結(NFTs)形成。許多學者〔1〕認為,Aβ對AD病理形成過程發揮重要作用,研究Aβ的產生、代謝及毒性對AD的防治有重要的意義。本文就該領域Aβ與AD關系研究進展作一綜述。
Aβ有40~43個氨基酸殘基,其中有Aβ40和Aβ42兩種形式,其中Aβ42聚集性最強,并且有強的神經細胞毒性。最新研究表明〔2~4〕,Aβ42聚集是引起Aβ42毒性蛋白的主要原因,Aβ42毒性蛋白是引起AD發病的主要原因,抑制Aβ42的聚集可以有效防止AD的發生。研究證實〔5〕,聚集的Aβ是形成SP的關鍵步驟。SP形成就是由于Aβ圍繞變性的樹突突起,軸索,類淀粉樣物質和膠質細胞及突起聚集而成〔6〕。淀粉樣前體蛋白(APP)經分泌酶產生Aβ〔7〕,APP細胞外側神經(N)末端很長,而細胞內C末端很短,Aβ的C末端是疏水性氨基酸,C末端越長越易沉積。APP經蛋白酶裂解產生Aβ,APP經α-分泌酶水解產生Aβ,這是APP合成Aβ的主要方式,APP還可以在β、γ-分泌酶參與下產生Aβ。3種水解酶裂解APP:α-分泌酶,β-分泌酶,γ-分泌酶。α-分泌酶裂解APP的位點是APP跨膜蛋白區NH2-末端12堿基位點,能產生可溶性胞外結構α-APPs和-83堿基C(CTF)-C83。而β-分泌酶裂解APP的位點位于α-分泌酶NH末端16堿基位點附近,產生胞外結構β-APPs和99個堿基CTF-C99。其中C83被γ-分泌酶裂解產生P5,而C99被γ-分泌酶裂解產生Aβ〔8〕。
Grundke-Iqbal等〔9〕發現了淀粉樣神經突起存在于NFT,其位于神經元細胞內部。NFT由雙股螺旋纖維(PHF)構成,同年Grundke-Iqbal〔9〕又發現NFT中大量過度磷酸化的Tau蛋白組成PHFs。Tau蛋白主要功能是促進微管形成,加強微管穩定,維持軸突形態。AD患者腦內磷酸化水平是正常人的3~4倍。過度磷酸化會導致Tau蛋白與微管結合部位構象改變,使Tau蛋白與微管分離、解體、細胞骨架破壞〔10〕。研究發現〔11〕,抑制Tau蛋白聚集可以減少毒性Tau蛋白聚合物的產生,減少NFT形成、改善Tau蛋白所導致的功能缺失作用。Tau蛋白的磷酸化過程有許多酶參與,包括:糖原合成酶激酶(GSK)-3、胞外信號調控激酶(ERK)-2、細胞周期素依賴性蛋白激酶(CDK)-5等,其中研究GSK-3最多。研究發現〔12〕,鋰可以抑制GSK-3β活性,提高γ-分泌酶活性,改變APP序列,促使APP分裂生成Aβ,從而提高Aβ聚集。降解蛋白質有2條途徑:泛素-蛋白酶體系統和自噬-溶酶體通路。Tau蛋白一般不通過這兩條途徑,Tau蛋白質降解與過度磷酸化、異常折疊及聚集的Tau蛋白清除有關。研究表明〔13〕,神經元有大量過磷酸化蛋白,膠質細胞也存在有磷酸化蛋白,AD和其他神經退行性疾病,蛋白免疫反應陽性存在于星形膠質細胞,潛在表達蛋白的能力出現在膠質纖維瘤和膠質增生過程,Aβ誘導的毒性因為蛋白表達陽性的細胞而更加敏感,所以,過度磷酸化Tau蛋白可能是AD淀粉樣纖維形成的重要誘因。研究表明〔14〕,Tau蛋白與 Aβ共同作用可以使AD患者記憶損失和行為缺陷,過度磷酸化Tau蛋白會代替正常細胞骨架,從而使神經纖維漸進性變性,βAPP被過度磷酸化Tau蛋白抑制使其不能向軸突,樹突轉運,增加Aβ的毒性,損傷神經元。最新研究表明〔15〕,Aβ42可以誘導Tau蛋白毒性,并且Ser262在Tau蛋白過磷酸化扮演重要角色,Ser262增強Tau蛋白過磷酸化,促使Aβ聚集誘導神經退化。
近年來發現〔16〕,PS與早發性家族型AD有關,PS參與Aβ的聚集。突變PS1可以改變γ-分泌酶活性,引起APP大量生成,導致Aβ42聚集,從而導致早發性家族型AD發生。PS 是γ-分泌酶的催化核心,γ-分泌酶功能可以調節膜內蛋白水解,膜內蛋白包括APP、APP樣蛋白(APLPs)、E-鈣黏蛋白、CD44、LRP、Notch、SREBP、干擾素反應因子(IRE1)和活化轉錄因子(ATF)-6〔17〕。Aβ聚集與PS1有密切關系,PS1基因位于14q24.3,PS1蛋白水解酶活性中心有TM6和TM7天冬氨酸殘基組成〔18〕。突變PS1主要位于蛋白質跨膜區,過量表達PS1影響線粒體功能,突變PS1引起APP水解位點的改變,導致Aβ42聚集〔19〕。最新研究表明〔20,21〕,γ-分泌酶的催化核心在PS1,PS1與3種必需輔助蛋白Nct、Pen-2和Aph1組成成熟的γ-分泌酶復合物,轉基因果蠅中γ-分泌酶復合物可以促使APP分裂生成Aβ。在AD患者中發現,突變的PS使AD患者血漿Aβ的濃度和神經元Aβ的聚集明顯增加,實驗也證實PS能夠促進Aβ的生成,并提高Aβ42水平,表明PS影響APP的代謝過程,引起Aβ的大量聚集〔22〕。PS1突變促使Aβ42聚集物增加2~3倍而Aβ40聚集物沒有改變,這表明PS1對APP代謝過程有影響〔23〕。Herranz等〔24〕報道果蠅CRUMBS/PALSI/PATJ(Crumbs復合物)通過對γ-分泌酶的抑制實現調控Notch信號的負反饋。果蠅Crumbs與人Crumbs 2同源,人CRB2與PS結合后形成復合體,參與γ-分泌酶的合成,但是這種γ-分泌酶沒有活性,所以可以抑制APP的分解,反而加劇Aβ毒性,損傷神經系統。果蠅表現出Notch信號缺失表型是因為蛋白的缺失或聚集,果蠅基因突變使APP活性增高,從而引起Aβ毒性的大量聚集。
ApoE分子量34.2 kD,由299個氨基酸組成,位于人類第19號染色體。ApoE有3種類型ApoE2、ApoE3和ApoE4,ApoE基因中能使Aβ降低的只有ApoE3,ApoE4與Aβ親和力不如ApoE3高,ApoE4使APP mRNA水平提高9倍。蛋白水解APP產生Aβ,Aβ產生和降解平衡被打破后,會導致Aβ毒性聚集〔25〕。研究表明〔26〕,Aβ聚集與ApoE關系密切。首先,ApoE可以促進Aβ的聚集。研究證實〔27〕,ApoE和與Aβ有高度親和性,ApoE4與Aβ結合不僅快而且強烈,從而引起Aβ大量沉積。其次,Aβ降解過程是ApoE的分子伴侶,二者結合形成復合物與低密度脂蛋白受體(LDLR)結合轉運到溶酶體。一般情況下,ApoE-Aβ復合物通過血腦屏障進行清除,ApoE4-Aβ復合物被清除速度遠遠小于ApoE3-Aβ和 ApoE2-Aβ,ApoE4-Aβ復合物的存在影響了Aβ的降解,所以ApoE4 患者Aβ生成量大于降解量。所以,發現ApoE結合位點,可以有效阻止與 Aβ結合,進而緩解AD的進展。學者〔28〕發現,ApoE處理過程APP的C末端有聚集物,APP水解過程減弱,APP介導信號減弱,ApoE影響APP代謝引起Aβ聚集,進而促進SP的形成。
綜上,Aβ通過諸多途徑產生神經毒性,而這些途徑相互作用形成網絡,促進AD的發生,而這個網絡的核心點是Aβ。因此,抑制Aβ聚集是防治AD的關鍵。Serneels等〔29〕選擇性地除去γ-分泌酶復合物中的Aph1B成分可減少Aβ斑塊的形成。調控蛋白磷酸酶和蛋白激酶水平,阻止Tau蛋白的水解,從而抑制Aβ聚集減少AD發生。目前,AD用于臨床治療的藥物包括美金剛、膽堿酯酶抑制劑、抗氧化藥物、非甾體類抗炎藥物,在臨床中應用,可以有效地抵抗Aβ毒性,但它只能改善癥狀、延緩AD進程。
6 參考文獻
1Jacobsen KT,Iverfeldt K.Amyloid precursor protein and its homologues:a family of proteolysis-dependent receptors〔J〕.Cell Mol Life Sci,2009;66(14):2299-318.
2Lansbury PT,Lashuel HA.A century-old debate on protein aggregation and neurodegeneration enters the clinic〔J〕.Nature,2006;443(7113):774-9.
3Petkova AT,Leapman RD,Guo Z,etal.Self-propagating,molecular-level polymorphism in Alzheimer's beta-amyloid fibrils〔J〕.Science,2005;307(5707):262-5.
4Slow EJ,Graham RK,Hayden MR.To be or not to be toxic:aggregations in Huntington and Alzheimer disease〔J〕.Trends Genet,2006;22(8):408-11.
5Hornsten A,Lieberthal J,Fadia S,etal.APL-1,a Caenorhabditis elegans protein related to the human beta-amyloid precursor protein,is essential for viability〔J〕.Proc Natl Acad Sci USA,2007;104(6):1971-6.
6Ashley J,Packard M,Ataman B,etal.Fasciclin Ⅱ signals new synapse formation through amyloid precursor protein and the scaffolding protein dX11/Mint〔J〕.J Neurosci,2005,25(25):5943-55.
7Torreilles F,Touchon J.Pathogenic theories and intrathecal analysis of the sporadic from of Alzheimer's disease〔J〕.Prog Neurobiol,2002;66(3):191-203.
8Wiessner C,Wiederhold KH,Tissot AC,etal.The second-generation active Aβ immunotherapy CAD106 reduces amyloid accumulation in APP transgenic mice while minimizing potential side effects〔J〕.J Neurosci,2011;31(25):9323-31.
9Grundke-Iqbal I,Iqbal K,Quialan M,etal.Microtubule-associated protein tan:a component of Alzheimer paired helical filaments〔J〕.J Bilo Chem,1986;261(13):6084-9.
10Hanger DP,Anderton BH,Noble W.Tau phosphorylation:the therapeutic challenge for neurodegenerative disease〔J〕.Trends Mol Med,2009;15(3):112-9.
11Wang Y,Martinez-Vicente M,Krüger U,etal.Tau fragmentation,aggregation and clearance:the dual role of lysosomal processing〔J〕.Hum Mol Genet,2009;18(21):4153-70.
12Levites Y,Das P,Price RW,etal.Anti-Abeta42-and anti-Abeta40-specific mabs attenuate amyloid deposition in an Alzheimer's disease mouse model〔J〕.J Clin Invest,2006;116(1):193-201.
13Arima K.Ultrastructural characteristics of tau filaments in tauopathies:immuno-electron microscopic demonstration of tau filaments in tauopathies〔J〕.Neuropathology,2006;26(5):475-83.
14Wang JZ,Grundke-Iqbal I,Iqbal K.Kinases and phosphatases and tau sites involved in Alzheimer neurofibrillary degeneration〔J〕.Eur J Neurosci,2007;25(1):59-68.
15Iijima K,Gatt A,Iijima-Ando K.Tau Ser262 phosphorylation is critical for Abeta42-induced tau toxicity in a transgenic Drosophila model of Alzheimer's disease〔J〕.Hum Mol Genet,2010;19(15):2947-57.
16Kumar S,Walter J.Phosphorylation of amyloid beta(Aβ)peptides-a trigger for formation of toxic aggregates in Alzheimer's disease〔J〕.Aging(Albany NY),2011;3(8):803-12.
17Tolia A,Horré K,De Strooper B.Transmembrane domain 9 of presenilin determines the dynamic conformation of the catalytic site of gamma-secretase〔J〕.J Biol Chem,2008;283(28):19793-803.
18Sato C,Takagi S,Tomita T,etal.The C-terminal PAL motif and transmembrane domain 9 of presenilin 1 are involved in the formation of the catalytic pore of the gamma-secretase〔J〕.J Neurosci,2008;28(24):6264-71.
19Querfurth HW,LaFerla FM.Alzheimer's disease〔J〕.N Engl J Med,2010;362(4):329-44.
20Du H,Yan SS.Mitochondrial permeability transition pore in Alzheimer's disease:cyclophilin D and amyloid beta〔J〕.Biochim Biophys Acta,2010;1802(1):198-204.
21Poeck B,Strauss R,Kretzschmar D.Analysis of amyloid precursor protein function in Drosophila melanogaster〔J〕.Exp Brain Res,2012;217:413-21.
22Deng Y,Tarassishin L,Kallhoff V,etal.Deletion of presenilin 1 hydrophilic loop sequence leads to impaired gamma-secretase activity and exacerbated amyloid pathology〔J〕.J Neurosci,2006;26(14):3845-54.
23Uemura K,Farner KC,Nasser-Ghodsi N,etal.Reciprocal relationship between APP positioning relative to the membrane and PS1 conformation〔J〕.Mol Neurodegener,2011;6(1):15.
24Herranz H,Stamataki E,Feiguin F,etal.Self-refinement of Notch activity through the transmembrane protein Crumbs:modulation of gamma-secretase activity〔J〕.EMBO Rep,2006;7(3):297-302.
25Rippon GA,Boeve BF,Parisi JE,etal.Late-onset frontotemporal dementia associated with progressive supranuclear palsy/argyrophilic grain disease/Alzheimer's disease pathology 〔J〕.Neurocase,2005;11(3):204-11.
26Drzezga A,Grimmer T,Henriksen G,etal.Effect of APOE genotype on amyloid plaque load and gray matter volume in Alzheimer disease〔J〕.Neurology,2009;(17):1487-94.
27Bell RD,Zlokovic BV.Neurovascular mechanisms and blood-brain barrier disorder in Alzheimer's disease〔J〕.Acta Neuropathol,2009;118(1):103-13.
28Irizarry MC,Deng A,Lleo A,etal.Apolipoprotein E modulates gamma-secretase cleavage of the amyloid precursor protein〔J〕.J Neurochem,2004;90(5):1132-43.
29Serneels L,Van Biervliet J,Craessaerts K,etal.gamma-Secretase heterogeneity in the Aph1 subunit:relevance for Alzheimer's disease〔J〕.Science,2009;324(5927):639-42.