張 良,陳增力,徐洪權,趙文峰
鈦表面鍍鉻對純鈦烤瓷剪切強度的影響
張 良,陳增力,徐洪權,趙文峰
目的評估鈦表面鍍鉻對純鈦烤瓷剪切強度的影響。方法70個純鈦標準試件 (10 mm×10 mm×1 mm)分為3組,A組10個(不進行任何處理);B組30個,5%硝酸鉻溶液(w/v)處理;C組30個,10%硝酸鉻溶液(w/v)處理;B組和C組根據電鍍時間不同(0.5、1、2 h)又分為3個亞組,每一組中5個試件用Vita Titankeramik瓷粉,5個試件用Triceram瓷粉。鈦瓷界面萬能試驗機(0.5 mm/min)進行剪切測試,并對斷裂界面進行電鏡掃描,用方差分析法和Tukey檢驗法分析。結果鈦表面鍍鉻后與瓷粉的結合強度明顯提升,差異有統計學意義(P<0.05),瓷粉對結合強度的影響無統計學意義,其中0.5 h、10%硝酸鉻溶液、Vita Titankeramik瓷粉,0.5 h、5%硝酸鉻溶液、Triceram瓷粉的結合強度是兩個實驗組中最高的,分別達到了(26.72±5.78) MPa和(25.48±4.14) MPa, 0.5 h、10%硝酸鉻溶液、鈦-Vita T組和0.5 h、5%硝酸鉻溶液、鈦-Triceram組可以很好地提高鈦-瓷結合強度,電鏡掃描圖也顯示鍍鉻可以提高鈦-瓷的結合強度。結論0.5 h、5%硝酸鉻溶液對于提高結合強度已經足夠。說明鉻層可以很好地阻擋鈦-氧結合,減少鈦氧層厚度,有效提高鈦-瓷結合強度。
剪切強度;結合強度;電鍍;烤瓷
烤瓷修復技術已成功使用多年[1]。貴金屬烤瓷由于價格高已逐漸被一般金屬烤瓷取代,而一般金屬烤瓷卻存在生物相容性差、低腐蝕性、邊緣著色等缺點[1,2]。近年來,鈦因其耐腐蝕性強、生物相容性良好、密度低、低導電性,以及價格適中逐漸成為修復材料的新寵[1,3],但純鈦烤瓷在實際應用過程中也存在亟待解決的問題,即熔點高,且高溫時容易起化學反應,不利于鑄造和烤瓷熔附[1,3,4]。高溫熔融時產生的金-瓷結合強度應當能夠滿足使用過程中來自各個方向的咀嚼力[5]。鈦-瓷結合的熔附溫度在800 ℃以上,高溫時鈦表面的氧化層、瓷氧化物、熱膨脹后的殘余應力都會影響鈦-瓷結合強度[4,5],其中過厚的氧化層是影響鈦-瓷結合強度的主要原因[4,6]。為了克服這一問題,亟需一種既能跟鈦結合又能形成適宜的氧化層,且有利于烤瓷熔附的表面改性劑。噴砂、鍍金、酸蝕、硅化、預氧化都做過嘗試[7-10],但效果并不理想。鉻能跟鈦結合,又能跟烤瓷熔附,因此本研究旨在評估鈦表面鍍鉻對純鈦烤瓷剪切強度的影響。
1.1 主要材料及設備 70個純鈦試件( 北京中金研新材料科技有限公司),規格10 mm×10 mm×1 mm,110 μm氧化鋁2.5個大氣壓下噴砂設備(東莞市百特研磨材料有限公司),蒸餾水超聲清洗機(德國班德利電子公司)。Vita 瓷粉 (Vita Zahnfabrick, 德國), Triceram瓷粉 (德國丹陀倫公司)。
1.2 分組 試件分為3組:第1組,10個鈦片不進行電鍍。第2、3組分別5%和10%硝酸鉻溶液(w/v),各30個鈦片;然后又按照電鍍時間(0.5、1、2 h)分為3個亞組,每組10個試件;每一亞組又有5個試件分別采用Vita瓷粉和Triceram瓷粉。
1.3 電鍍過程
1.3.1 試件準備 純鈦試件在配好的溶液(50 ml蒸餾水,40 ml硝酸,10 ml 40%氫氟酸)中浸泡2 min后即刻電鍍。
1.3.2 電鍍儀器 正極是一個1 cm2鉑片,負極是鈦片,電解液為Cr(NO3)3·9H2O溶液,電源為12 V的直流電,電流0.5 A(電源型號1030A,日本)。
1.4 烤瓷熔附 一個直徑6 mm,高4 mm的開縫塑料圈置于鈦片中央,瓷粉熔附于此圈內,先是一薄層黏接瓷,然后上遮色瓷、飾瓷,最后上釉,操作步驟按廠家說明進行。所有的試件37 ℃水浴24 h,然后進行5~55 ℃冷熱循環1000次,每次間歇1 min。
1.5 剪切強度測試 試件嵌入直徑25 mm、高20 mm的自凝塑料塊(上海齒科材料廠)內,用30°V形葉片在萬能試驗機上進行剪切強度測試,測試點距烤瓷熔附界面0.1 mm,以0.5 mm/min的速度直至界面破壞,并用顯微鏡觀察并對破壞性質進行區分。后者主要分內聚性破壞、結合性破壞、混合型破壞。
1.6 破壞界面電鏡掃描 每一小組選出2個有代表性的試件對其破壞界面進行電鏡掃描。將試件沿長軸切開,切開的界面超聲清洗10 min,碳化硅砂紙打磨,氧化鋁拋光,噴金,電鏡掃描。
2.1 剪切強度 電鍍時間對鈦-瓷結合強度的影響有明顯的統計學差異(F=4.713,P=0.001),熔附瓷粉對鈦-瓷結合強度的影響無統計學差異(F=2.773,P=0.101,表1)。0.5 h、10%硝酸鉻溶液、Vita瓷粉條件下剪切強度為(26.72 ± 5.78) MPa,0.5 h、5%硝酸鉻溶液、Triceram條件下為(25.48 ± 4.14) MPa,這兩種條件下結合強度高于其他條件下(表2)。光學顯微鏡觀察,這兩組破壞模式均為內聚性破壞,而未電鍍、0.5 h、5%硝酸鉻、鈦-Vita組,2 h、10%硝酸鉻、鈦- Vita組,2 h、5%硝酸鉻、鈦-Triceram組,2 h、10%硝酸鉻、鈦-Triceram組均為結合性破壞,其余組的破壞模式多樣。
2.2 鈦-瓷界面電鏡掃描 兩種鈦-瓷界面的電鏡掃描均顯示鈦-瓷有良好的匹配性,但鈦-Vita結合的未電鍍組和2 h、5%硝酸鉻組,以及鈦-Triceram結合的未電鍍組和2 h、10%硝酸鉻組的界面結合小孔較多(圖1)。此外,電鏡下鈦-Vita和鈦-Triceram結合界面厚度分別為(26.8±2.8)μm和(33.6±5.3)μm,兩組比較差異有統計學意義(P<0.05)。
注:與未電鍍比較,①P<0.05;與電鍍時間0.5 h比較,②P<0.05;與Vita瓷粉比較,③P<0.05
A. 鈦-Vita結合的未電鍍組;B. 鈦-Vita結合的、2 h、5%硝酸鉻溶液組;C. 鈦- Triceram結合未電鍍組;D. 鈦- Triceram結合的、2 h、10%硝酸鉻溶液組;箭頭所指為界面小孔
鈦氧化層的范圍對鈦-瓷結合強度有重要影響[8]。本研究結果表明,0.5 h、10%硝酸鉻溶液、鈦-Vita T組和0.5 h、5%硝酸鉻溶液、鈦-Triceram組的結合強度最高,該結果跟顯微鏡的觀察結果一致。另外,兩組的破壞模式均為內聚性破壞,這是由于鍍鉻減少了鈦表面氧化層的厚度,而且高溫狀態下鉻-氧結合比較穩定,形成的鉻-氧層減少了鈦與氧的接觸,提高了高溫狀態鈦-氧結合的活化能[4],因此形成的鈦-氧層較薄。
本研究中未進行電鍍的鈦-瓷結合強度是最低的實驗,電鏡掃描也顯示結合界面多孔,這說明結合層氧富余,破壞界面多位于鈦-氧層,過量的金屬氧化物在金屬-瓷之間形成了夾心效應,加熱時金屬氧化物會在界面產生應力,進而會影響結合強度。
除0.5 h、10%硝酸鉻溶液、鈦-Vita T組和0.5 h、5%硝酸鉻溶液、鈦-Triceram組外,其他組的結合強度與未電鍍組比較,差異無統計學意義,可能是由于鈦表面的鉻層過厚,影響了鈦-瓷結合;也有可能是鉻氧結合產生的殘余應力對鈦-瓷結合有影響,因為鉻的熱胖張系數約為12× 10-6/C,遠遠高于鈦的熱胖張系數(約7× 10-6/C),匹配性差會在界面產生殘余應力降低金屬-瓷的結合強度[11]。
可以看出,鈦-瓷結合界面的薄弱區在于氧化層未完全與瓷結合,想獲得更大的結合力必須克服這一點。本研究結果,顯示鍍鉻可以提高鈦-瓷結合強度,但鉻層的厚度多少適宜,尚需進一步研究。
[1] 巢永烈. 口腔修復學[M]. 北京:人民衛生出版社,2006:58-70.
[2] López-Alías J F, Martinez-Gomis J, Anglada J M,etal. Ion release from dental casting alloys as assessed by a continuous flow system: nutritional and toxicological implications[J]. Dent Mater, 2006,22( 9): 832-837.
[3] Abidi Y A, Jameel A, Hasan A,etal. An evaluation association between crown margin and type of restorative materials with on the periodontal health [J]. JPDA, 2011,20(3):148-153.
[4] Wang R R, Fung K K. Oxidation behavior of surface-modified titanium for titanium-ceramic restorations [J]. J Prosthet Dent, 1997,77(4):423-434.
[5] ?zcan I, Uysal H. Effects of silicon coating on bond strength of two different titanium ceramic to titanium [J]. Dent Mater, 2005,21(8):773-779.
[6] K?n?nen M, Kivilahti J. Fusing of dental ceramics to titanium [J]. J Dent Res, 2001,80(3):848-854.
[7] Reyes M J D, Oshida Y, Andres C J,etal. Titanium-porcelain system. Part III: effects of surface modification on bond strengths [J]. Biomed Mater Eng, 2001,11(2):117-136.
[8] 張藝萍, 葉劍濤. 表面處理技術提高鈦-瓷結合強度的研究進展[J]. 中華口腔醫學研究雜志(電子版), 2012, 6(4): 382-385.
[9] AI Hussaini I, AI Wazzan K A. Effect of surface treatment on bond strength of low-fusing porcelain to commercially pure titanium [J]. J Prosthet Dent, 2005, 94(4): 350-356.
[10] Yan M, Kao C T, Ye J S,etal. Effect of preoxidation of titanium on the titanium-ceramic bonding[J]. Surf Coat Technol, 2007, 202(2): 288-293.
[11] Wu J, Zhou J, Zhao W,etal. Evaluation of the bond strength of a low-fusing porcelain to cast Ti-24 Nb-4 Zr-7.9 Sn alloy [J]. Mater Sci Eng, 2013,33 (1):140-144.
(2013-09-13收稿 2014-03-02修回)
(責任編輯 武建虎)
Effectofpuretitaniumelectroplatedchromiumonshearbondstrengthbetweenporcelainandtitanium
ZHANG Liang, CHEN Zengli, XU Hongquan, and ZHAO Wenfeng. Department of Stomatology,General Hospital of Beijing Military Command Area, Beijing 100700, China
ObjectiveTo evaluate the effect of pure titanium electroplated chromium on the shear bond strength between titanium and porcelain.MethodsSeventy specimens of machined commercially pure titanium (CP Ti) plates grade Ⅱ (10 mm×10 mm×1 mm) were prepared. The specimens were divided into three groups saccording to the concentration of electroplating solution, Gr Ⅰ (control without electroplating,n=10), Gr Ⅱ (5%, w/v, of chromium nitrate solution,n=30) and Gr Ⅲ (10%, w/v, of chromium nitrate solution,n=30). Groups Ⅱ and Ⅲ were further divided into three subgroups (n=10) according to the electroplating time (0.5, 1 and 2 h). Two titanium-porcelains (Vita Titankeramik and Triceram) were applied to each subgroup (n= 5). The titanium-porcelain interfaces were loaded under shear in a universal testing machine (crosshead speed: 0.5 mm/min) until failure occurred. Failure types were examined by stereomicroscopy and the titanium-porcelain interface examined by SEM. Data were analyzed using ANOVA and Tukey’s test.ResultsBond strength values were significantly affected by the type of electroplating treatment (P<0.05), but not by the type of porcelain. The CP Ti/Vita Titankeramik (0.5 h,10%, w/v) and the CP Ti/Triceram (0.5 h 5%, w/v) groups showed the highest bond strength(MPa) (26.72 ± 5.78 and 25.48 ± 4.14) respectively among the groups,suggesting that surface treatment of CP Ti using chromium interlayer coating for 0.5 h 5% (w/v) and 0.5 h 10% (w/v) by electroplating enhanced the shear bond strength between titanium and porcelain. Stereomicroscope and SEM images showed that chromium interlayer enhanced the bond strength between porcelain and titanium.ConclusionsThere are no significant differences between chromium plating treatment for 0.5 h 5% (w/v) and 0.5 h 10% (w/v) in the bond strength for both types of titanium-porcelain. Consequently, electroplating treatment using 5% (w/v) for 0.5 h may be sufficient for bond improvement between titanium and porcelain. It appears that the Cr interlayer acts as a good oxygen diffusion barrier and effectively prevents excessive oxidation of titanium surfaces at porcelain sintering temperatures.
shear bond strength; adhesion; electroplating; metal-ceramic
張 良,碩士,主治醫師,E-mail:zl8375@sina.com
100700,北京軍區總醫院口腔科
趙文峰,E-mail:2232016942@qq.com
R783.1