999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Global bifurcation of a cubic system perturbed by degree four

2014-03-20 08:25:16DeshengShangZhengWang

Desheng Shang, Zheng Wang

(Department of Mathematics, School of Sciences,Shandong University of Technology, Zibo 255049, China)

1 Introduction

Hilbert sixteenth problem has been extensively studied in the last few decades, especially for quadratic and cubic systems[1-19]. However there are many works (see for instance [4,6,9,10,11,16] etc.) discussing on the study of the following system

(1)

In this paper, we study the following system

(2)

wheref3(x,y) =a1+a2x+a3x2+a4x3+a5y2+a6xy2.

Remark1 This is a case of system (1) whenf(x,y)=yf3(x,y),b∈R.

Remark2 Of the three cases, i.e.b>0,b=0, andb<0, only the case ofb>0 is studied in detail in this paper, for the case ofb<0 can be transformed tob>0 throughb→-b, and whenb=0, the analysis is similar and results are simple than the case ofb>0.

Our main result is stated in the following theorem.

Theorem1 The system (2) can have nine limit cycles, with their distributions being 3+(3, 3) and 2+(3, 4) (see Fig 3).

2 Studying on perturbed homoclinic loops and main lemmas

Mi(a) =-∮Li(a1+a2x+a3x2+a4x3+a5y2+a6xy2)ydx=

2[Ai1a1+Ai2a2+Ai3a3+Ai4a4+Ai5a5+Ai6a6],

(3)

andgiare fixed positive numbers fori=1,2, and whereAij,i=1,2,j=1,2,…, 6 in (3) are given as follows,

and

I2j(b)=(-1)j-1I1j(-b),A2j(b)=(-1)j-1A1j(-b) ,j=1, 2, 3, 4.

We easily obtain

Lemma1 (i) Assume thatb>0. Then there exists a function

(4)

(ii) Ifa2=K2(ε,a1,a3,a4,a5,a6) holds, then there exists a function

(5)

Proof(i) follows directly from the expression ofM1(ε,a) in (3), and substitutinga2=K2(ε,a1,a3,a4,a5,a6) into the expression ofM2(ε,a) in (3), we get

Therefore, we getd2≥0(<0) if and only if

according toP3<0. Thus the proof (ii) of the Lemma is completed.

We easily get the divergence of the system (2) at the origin is div(2)|Oε(0, 0)= -εa1+O(ε2), therefore the following lemma holds.

Lemma2 There exists a function

K1(ε,a4,a5,a6)=O(ε) ,

(6)

such that div(2)|Oε(0, 0)≥0(<0) if and only ifa1≤(>)K1(ε,a4,a5,a6).

By [2-3], we have the following result.

Lemma3 Whenai=Ki,i=1,2,3 hold, the integral

δi0= ∮Li*(a1+a2x+a3x2+a4x3+3a5y2+3a6xy2)dt

is converging at both sides ast→±∞ , and

δi0= ∮Li(a1+a2x+a3x2+a4x3+3a5y2+3a6xy2)dt+O(ε) ,i=1, 2.

(7)

Now, we will compute (7) under conditionsai=Ki,i=1,2,3. Direct calculation shows

a1+a2x+a3x2+a4x3+3a5y2+3a6xy2=

whereTij=∮Lixjdt,i=1,2,j=1,2,…, 5,Dij=∮Lixj-1y2dt,i,j=1, 2 andT2j(b)=(-1)jT1j(-b).

By direct computation, we have

Therefore, for allb≥0, we have

δ10(b)= [g(b)/(20b6+90b4+81)]a4+

Thus the implicit function theorem implies that the following lemma holds.

Lemma4 Under conditionsai=Ki,i=1,2,3, there exists a functionK4(a5,a6,ε) such that

δ10(b)≥0 if and only ifa4≥K4(a5,a6,ε) forb∈(0,b1)∪(b2, +∞) ,

anda4≤K4(a5,a6,ε) forb∈(b1,b2),

(8)

whereK4(a5,a6,ε)=p1a5+p2a6+O(ε), and

Under conditionsai=Ki,i=1,2,3,4, by direct computation, we have

Settingδ20(b)=0 and using the implicit function theorem, we have

Lemma5 Under conditionsai=Ki,i=1,2,3,4, there exists a function

(9)

such thatδ20(b)≥0 if and only ifa5≥K5(a6,ε) .

[fxy(fyy-fxx) +gxy(gyy-gxx)-fxxgxx+fyygyy]/λ},

whereλ>0 and the right-hand side function is evaluated at the origin (see [7]).

wherer(b)=243-1620b2-3348b4-768b6-128b8.

Using Mathematica 5.0, we easily give the figure ofr(b) in Figure 1(2) and obtain that it has a unique rootb(2)=0.34584269841197390867. ThereforeR11>0 when 0b(2)fora6ε>0.

According to [5] and [7], we have the following lemma.

Lemma7 If the homoclinic loopLiis along the clockwise direction, and the first saddle valueR11>0 (resp. <0), thenLiis stable (resp. unstable) inside; if the double homoclinic loopL=L1∪L2is along the clockwise direction, and the first saddle valueR11>0 (resp. <0), then the double homoclinic loopLis unstable (resp. stable) outside.

3 Research on the foci′s stability and the boundedness of system (2)

-ε{ [a2-ba3+a4(1+b2)]xi0+(a3-ba4)}+O(ε2) =

wherefi(b)=xi0(324b+135b3+1716b5+460b7) + (243-2403b2-3816b4-972b6).

Figure 1 The figure of the functions g(b),r(b) and f2(b).Here (1) is the figure of g(b),(2) is the figure of r(b), and (3) is the figure of f2(b)

H(B)-H(A)=-ε∮Γ h(a1+a2x+a3x2+a4x3+a5y2+a6xy2)ydx+O(ε2) .

Under conditionsai=Ki,i=1,2,…,5, and noting that

we thus have

H(B)-H(A) =-εa6[E1∮Γhx2y2dy+E2∮Γhxy2dy+E3∮Γhx4dy

+E4∮Γhx3dy+E5∮Γhx2dy]+O(ε2) ,

(10)

where

(11)

Therefore we have

(12)

Thus under this transformation, we have the closed curveΓhchanges intoγh:u4+y2=2h,h>0 for sufficiently largeh, and the directions of them are both clockwise.

A simple computation gives the following results hold

Lemma8 Along the closed curveγh:u4+y2=2h,h>0, we have

The proof of Lemma 8 is simple using the fact that

Then along the closed curveΓhin (10), we get that the integrals ∮Γhxiyjdyhave the following asymptotic expressions for sufficiently largeh.

Substituting these asymptotic expressions in (10) we get

(13)

Thus forhsufficiently large, the sign ofH(B)-H(A) is determined by the sign of the highest term ofh, therefore determined by the sign ofW(b). Thus we obtain that ifb∈(0,b*), thenW(b)>0, this impliesH(B)H(A), and the perturbed system (2) is unbounded.

By the analysis stated above, we get table 1 (whereb≠b1andb≠b2forb>b(3), and denoteci=div(2)Piε,i=1,2).

Table 1 The values which determining qualitative analysis of system (2)

4 The analysis and proof of the main result

Now, we will finish the proof of the main result. For convenience, we give the assumptions thata6>0 andε>0 is small enough.

According to table 1, we can divide our analysis into five cases.By the previous analysis, we have that all the trajectories are bounded outside the double homoclinic loopL*in case (I) and (II) of table 1, and unbounded outside the double homoclinic loopL*in case (III), (IV) and (V).

Case(I) Whenb∈(0,b(1)), we haveR11>0, andci>0,i=1,2 according to table 1.

Figure 2 The limit cycle distributions of system (2) in case (I)

Thus,in general,according to above arguments,we have that system (2) can exist at least 8 limit cycles in the case I,their distributions are shown in Figure 2,we denote as 3+(3, 2) and 2+(3, 3), respectively.

Case(II) Whenb∈(b(1),b*), we haveR11>0, andc1<0,c2>0 according to table 1.

The following analysis are the same as case (I). And finally, we get the system (2) can have 9 limit cycles in this case, their distribution are 3+(3, 3) and 2+(3, 4), see Figure 3.

Figure 3 The limit cycle distributions of system (2) in case (II)

For the analysis of Case (III), Case (IV) and Case (V), similar to the analysis of case (I) and case (II) (omitted for brief), we obtain that the system (2) have 8 limit cycles with distributions 2+(4, 2) and 1+(4, 3) in case (III); 9 limit cycles with distributions 3+(3, 3) and 2+(3, 4) in case (IV); and 8 limit cycles with distributions 2+(3, 3) and 3+(2, 3) in case (V), respectively.

:

[1] Z. Cheng,J. Ren.Periodic solution for high-order differential system[J].Journal of Applied Analysis and Computation, 2013,3(3):239-249.

[2] M. Han.Cyclicity of planar homoclinic loops and quadratic integrable systems[J].Sci. China,1997,40A(12):1247-1258.

[3] M. Han,J. Chen.On the number of limit cycles in double homoclinic bifurcations[J].Sci. China,2000,43A(9):914-928.

[4] M. Han.On the number and distributions of limit cycles in a cubic system[J].Chinese Annals of Mathematics,2002,23A(2):143-152(In Chinese).

[5] M. Han,S. Hu,X. Liu.On the stability of double homoclinic and heteroclinic cycles[J].Nonlinear Analysis,2003,53:701-713.

[6] M. Han,C. Fan.On the number and distributions of limit cycles in a quartic system[J].Chinese Annals of Mathematics,2005,26A(6):825-834.

[7] M. Han,T. Zhang.Some bifurcation methods of finding limit cycles[J].Mathematical Biosciences and Engineering,2006,3(1):67-77.

[8] M. Han.Remarks on the center and focus problem for planar systems[J].Journal of Shanghai Normal University(Natural Sciences),2013,42(6):565-579.

[9] E. Horozov,I. D. Ilieve.Linear estimate for the number of zeros of Abelian integrals with cubic Hamiltonian[J].Nonlinearity,1998,11:1521-1537.

[10] I. D. Ilieve,High-orger Melnikov functions for degenerate cubic Hamiltonians[J].Adv. Diff. Equs.,1996,1(4):689-708.

[11] I. D. Ilieve,I. M. Perko.Higher order bifurcations of limit cycles[J].J. Diff. Eqns.,1999,154:339-363.

[12] C. Li,C. Liu,J. Yang.A cubic system with thirteen limit cycles[J].J. Differential Equations,2009,246:3609-3619.

[13] J. Li.Hilbert′s 16th problem and bifurcations of planar polynomial vector fields[J].Int. J. Bifurcation and Chaos,2003,13(1):47-106.

[14] N.G. Lloyd,J. M. Pearson.A cubic differential system with nine limit cycles[J].Journal of Applied Analysis and Computation,2012,2(3):293-304.

[15] Rasool Kazemi,Hamid R. Z.Zangeneh.Bifurcation of limit cycles in small perturbations of a hyper-elliptic Hamiltonian system with two nilpotent saddles[J].Journal of Applied Analysis and Computation,2012,2(4):395-413.

[16] D. Shang,M. Han,J. Sun.The global bifurcation of a cubic system,Acta Mathematicae Applicatae Sinica[J].English Series,2006,22(2):325-332.

[17] X. Wei,S. Shui.The shape of limit cycles for a class of quintic polynomial differential systems[J].Journal of Applied Analysis and Computation,2012,3(3):291-300.

[18] J. Yang,M. Han,J. Li,et al.Existence conditions of thirteen limit cycles in a cubic system[J].Int. J. Bifurcation and Chaos,2010,20(8):2569-2577.

[19] J. Yang.On the limit cycles of a kind of Liénard system with a nilpotent center under perturbations[J].Journal of Applied Analysis and Computation,2012,2(3):325-339.

主站蜘蛛池模板: 熟女日韩精品2区| 国产主播在线一区| 伦伦影院精品一区| 亚洲综合色吧| 2019年国产精品自拍不卡| 97成人在线观看| 波多野结衣爽到高潮漏水大喷| 国产欧美日韩va| 亚洲国产中文欧美在线人成大黄瓜| 欧美成人午夜视频免看| 久久精品只有这里有| 美女啪啪无遮挡| 成人午夜久久| 亚洲二三区| 日韩高清在线观看不卡一区二区| 一级在线毛片| 伊人狠狠丁香婷婷综合色| 毛片最新网址| 四虎综合网| 国产精品深爱在线| 国产午夜福利亚洲第一| 国产成人一区| 国产精品一区二区国产主播| 国产成人无码久久久久毛片| 亚洲第一极品精品无码| a欧美在线| 国产资源免费观看| 波多野结衣无码中文字幕在线观看一区二区| 99这里只有精品在线| 国产网站一区二区三区| 午夜人性色福利无码视频在线观看| yjizz国产在线视频网| 久久精品亚洲热综合一区二区| 伊人久久大香线蕉影院| 国产在线精品人成导航| 国产爽妇精品| 18禁不卡免费网站| 成人在线不卡视频| 国产精品免费露脸视频| 欧美午夜网站| 中文字幕不卡免费高清视频| 毛片大全免费观看| 2021国产精品自拍| 一本色道久久88综合日韩精品| 日韩欧美一区在线观看| 国产v欧美v日韩v综合精品| 国产尹人香蕉综合在线电影| 国产在线啪| 成人综合久久综合| 久久黄色影院| 国产原创第一页在线观看| 野花国产精品入口| 亚洲美女久久| 日本国产精品| a网站在线观看| 国产综合日韩另类一区二区| 伊人AV天堂| 日本三区视频| 99热这里只有精品在线播放| 国产一级精品毛片基地| 国产自产视频一区二区三区| 欧美97色| 色窝窝免费一区二区三区 | 国产小视频免费观看| 亚洲另类色| 国产精品yjizz视频网一二区| 亚洲成人网在线观看| 亚洲最新网址| 四虎国产精品永久一区| 丁香婷婷激情综合激情| 国产成人无码AV在线播放动漫| 国产成人精品免费视频大全五级| 97国内精品久久久久不卡| 国产精品夜夜嗨视频免费视频| 国产一区二区视频在线| 1769国产精品视频免费观看| 亚洲天堂日韩在线| 国产在线视频二区| 91久久国产热精品免费| 91无码国产视频| 国产91蝌蚪窝| 91啪在线|