999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

常利息力下稀疏風(fēng)險(xiǎn)模型的生存概率

2014-03-27 02:17:54王貴紅趙金娥
關(guān)鍵詞:定義數(shù)學(xué)模型

王貴紅,趙金娥

(1.玉溪農(nóng)業(yè)職業(yè)技術(shù)學(xué)院 計(jì)算機(jī)科學(xué)系, 云南 玉溪 653106;2.紅河學(xué)院 數(shù)學(xué)學(xué)院, 云南 蒙自 661199)

風(fēng)險(xiǎn)理論不僅是當(dāng)前保險(xiǎn)業(yè)、精算界研究的重要課題,而且也是數(shù)學(xué)學(xué)科的一個(gè)重要分支,其主要研究和處理保險(xiǎn)實(shí)務(wù)中的隨機(jī)風(fēng)險(xiǎn)模型,并從定量的角度分析保險(xiǎn)公司經(jīng)營(yíng)的安全性.生存概率作為其中一個(gè)核心課題,在風(fēng)險(xiǎn)理論的研究中有著舉足輕重的地位[1-2].經(jīng)典風(fēng)險(xiǎn)模型由瑞典精算師Lundberg[3]于1903年創(chuàng)立,它在理論上為風(fēng)險(xiǎn)模型奠定了重要的思路,但作為一種理論模型由于其在應(yīng)用上的方便及在數(shù)學(xué)上的簡(jiǎn)單性,學(xué)者們對(duì)它的研究已經(jīng)比較深入和完善.在經(jīng)典風(fēng)險(xiǎn)模型中,總是假定保險(xiǎn)公司的保費(fèi)收入是時(shí)間的線性函數(shù),但在保險(xiǎn)公司的實(shí)際運(yùn)營(yíng)中,經(jīng)常要根據(jù)以往的索賠經(jīng)驗(yàn)對(duì)保費(fèi)率進(jìn)行調(diào)整,以致于在未來(lái)某個(gè)固定的時(shí)期內(nèi)保險(xiǎn)公司收到的保險(xiǎn)費(fèi)是隨機(jī)的.根據(jù)這一實(shí)際情況,文獻(xiàn)[4-7]研究了保費(fèi)收入是復(fù)合Poisson過(guò)程的風(fēng)險(xiǎn)模型,并假設(shè)保險(xiǎn)公司的保單到達(dá)過(guò)程與索賠計(jì)數(shù)過(guò)程是相互獨(dú)立的.事實(shí)上,由于保險(xiǎn)公司所賣出的保單數(shù)越多,其發(fā)生的索賠次數(shù)也應(yīng)更多,因此保險(xiǎn)公司的索賠計(jì)數(shù)過(guò)程與保單到達(dá)過(guò)程之間應(yīng)具有某種相依性.此外,現(xiàn)實(shí)生活中,貨幣利息強(qiáng)度總是存在且對(duì)保險(xiǎn)公司的經(jīng)營(yíng)也有一定的影響,因此研究常利息力下稀疏風(fēng)險(xiǎn)模型的生存概率是非常有現(xiàn)實(shí)意義的.基于以上事實(shí),考慮一類常利息力下的風(fēng)險(xiǎn)模型,其中保單到達(dá)過(guò)程為復(fù)合Poisson過(guò)程,而索賠的計(jì)數(shù)過(guò)程為保單到達(dá)過(guò)程的p-稀疏過(guò)程.利用盈余過(guò)程的馬氏性及概率論、隨機(jī)過(guò)程等學(xué)科的理論方法,得到了模型在有限時(shí)間內(nèi)和無(wú)限時(shí)間內(nèi)生存概率滿足的積分-微分方程,并在保費(fèi)額及索賠額均服從指數(shù)分布時(shí)得到了有限時(shí)間內(nèi)生存概率的微分方程.

1 模型引入

定義1 設(shè)(Ω,F,P)是一包含本文所有隨機(jī)變量(隨機(jī)過(guò)程)的完備概率空間,則對(duì)u≥0,t≥0,定義保險(xiǎn)公司在t時(shí)刻的盈余為:

(1)

其中:

1)δ≥0為常利息力,常數(shù)u表示保險(xiǎn)公司的初始準(zhǔn)備金;

2) {M(t),t≥0}是參數(shù)為λ>0的Poisson過(guò)程,表示保險(xiǎn)公司在(0,t]時(shí)間內(nèi)收到的保單數(shù);

3) {Yk,k≥1}是一獨(dú)立同分布的非負(fù)隨機(jī)變量序列,表示保險(xiǎn)公司第k次收取的保險(xiǎn)費(fèi),其分布函數(shù)為G(y);

4) {N(t),t≥0}是{M(t),t≥0}的一個(gè)p-稀疏過(guò)程,即{N(t),t≥0}是強(qiáng)度為λp(0

5) {Xk,k≥1}是一獨(dú)立同分布的非負(fù)隨機(jī)變量序列,表示保險(xiǎn)公司第k次的索賠額,其分布函數(shù)為F(x);

6) {Xk,k≥1},{Yk,k≥1}和{M(t),t≥0}相互獨(dú)立.

定義2 記T=inf{t≥0,Uδ(t)<0},表示保險(xiǎn)公司的破產(chǎn)時(shí)刻,則在初始準(zhǔn)備金為u的條件下,分別定義保險(xiǎn)公司的最終破產(chǎn)概率及在t時(shí)刻之前的破產(chǎn)概率為

ψ(u)=P{T<∞|Uδ(0)=u},ψ(u,t)=P{T

對(duì)應(yīng)的生存概率為Φ(u)=1-ψ(u),Φ(u,t)=1-ψ(u,t).

2 主要結(jié)果

定理1 風(fēng)險(xiǎn)模型(1)在無(wú)限時(shí)間內(nèi)的生存概率Φ(u)滿足以下積分-微分方程:

(2)

并滿足邊界條件:

Φ(+∞)=1,Φ(0)=0,

證明令h(t)=ueδt-u,則在很小的時(shí)間區(qū)間(0,Δt)內(nèi),由全概率公式及盈余過(guò)程的馬氏性,有

等價(jià)地

上式兩邊同時(shí)除以Δt,并令Δt→0,則有

由此可得

由文獻(xiàn)[5]知Φ(+∞)=1,顯然Φ(0)=0,在(2)式中令u→0,得

推論1 若F(x)=1-αe-αx(x≥0),G(y)=1-βe-βy(y≥0),則對(duì)于任何u≥0,Φ(u)滿足下面的微分方程:

uδΦ?(u)+[2δ-λ-uδ(β-α)]Φ″(u)+[(λ-δ)(β-α)-uδαβ]Φ′(u)=0.

并滿足邊界條件

Φ(+∞)=1,Φ(0)=0,

證明將F(x)=1-αe-αx,G(y)=1-βe-βy代入(2)式,有

(3)

由文獻(xiàn)[8]知Φ(u)具有可微性,故對(duì)(3)式兩邊關(guān)于u求導(dǎo),得

(4)

(4)式兩邊再對(duì)u求導(dǎo),有

(5)

由(3)~(5)式,即得

uδΦ?(u)+[2δ-λ-uδ(β-α)]Φ″(u)+[(λ-δ)(β-α)-uδαβ]Φ′(u)=0

定理2 風(fēng)險(xiǎn)模型(1)在有限時(shí)間內(nèi)的生存概率Φ(u,t)滿足下列偏微分-積分方程:

并滿足邊界條件:

Φ(+∞,t)=1,Φ(u,∞)=Φ(u).

證明類似于定義1,有

Φ(u,t)=[1-λΔt+o(Δt)]Φ(u+h(Δt),t-Δt)+

等價(jià)地

上式兩邊同時(shí)除以Δt,并讓?duì)→0,則有

參考文獻(xiàn):

[1] 龔日朝.廣義復(fù)合Poisson模型下有限時(shí)間內(nèi)的生存概率[J].數(shù)學(xué)季刊,2003,18(2):134-139.

[2] 王后春.兩個(gè)風(fēng)險(xiǎn)模型的生存概率的積分方程[J].哈爾濱理工大學(xué)學(xué)報(bào),2005,10(5):112-114.

[3] LUNDBERG F I. Approximerad framstallning af sannolikhetsfunktionen: II. Aterforsakring af kollektivrisker[M].Uppsala.,1903.

[4] 趙金娥,王貴紅,龍瑤.理賠次數(shù)為復(fù)合Poisson-Geometric過(guò)程的風(fēng)險(xiǎn)模型[J].西南大學(xué)學(xué)報(bào):自然科學(xué)版,2013,35(3):78-83.

[5] 方世祖,羅建華.雙復(fù)合Poisson風(fēng)險(xiǎn)模型[J].純粹數(shù)學(xué)與應(yīng)用數(shù)學(xué),2006,22(2):271-278.

[6] BOIKOV A V. The Cramer-Lundberg model with stochastic premium process[J]. Theory of Probability & Its Applications, 2003, 47(3): 489-493.

[7] 趙金娥,何樹紅,王貴紅.帶線性紅利和干擾的雙復(fù)合Poisson風(fēng)險(xiǎn)模型[J].云南民族大學(xué)學(xué)報(bào):自然科學(xué)版,2010,19(1):24-27.

[8] 張春生,吳榮.關(guān)于破產(chǎn)概率函數(shù)的可微性的注[J].應(yīng)用概率統(tǒng)計(jì),2001,17(3):267-275.

猜你喜歡
定義數(shù)學(xué)模型
一半模型
重要模型『一線三等角』
重尾非線性自回歸模型自加權(quán)M-估計(jì)的漸近分布
3D打印中的模型分割與打包
我為什么怕數(shù)學(xué)
新民周刊(2016年15期)2016-04-19 18:12:04
數(shù)學(xué)到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
成功的定義
山東青年(2016年1期)2016-02-28 14:25:25
數(shù)學(xué)也瘋狂
修辭學(xué)的重大定義
山的定義
主站蜘蛛池模板: 免费午夜无码18禁无码影院| 天天躁夜夜躁狠狠躁图片| 国产超碰一区二区三区| 国产成a人片在线播放| 91在线播放国产| 亚洲成AV人手机在线观看网站| 伊伊人成亚洲综合人网7777| 亚洲动漫h| 色综合综合网| 国产99视频在线| yjizz视频最新网站在线| 麻豆精品久久久久久久99蜜桃| 国产成人高清亚洲一区久久| 欧美亚洲国产日韩电影在线| 久久99国产综合精品女同| 国产三级成人| 久久综合婷婷| 国产成人精品男人的天堂| 国产资源免费观看| 人妻丰满熟妇αv无码| 亚洲av无码片一区二区三区| 国产在线欧美| 国产sm重味一区二区三区| 国产日本视频91| 国产成人综合日韩精品无码首页| 国产理论最新国产精品视频| 久久大香香蕉国产免费网站| 国产swag在线观看| 中文字幕精品一区二区三区视频| 特级毛片8级毛片免费观看| 最新精品久久精品| 亚洲免费人成影院| 久久久噜噜噜| 毛片网站观看| 亚洲国产综合精品中文第一| 精品超清无码视频在线观看| 91精品人妻一区二区| 國產尤物AV尤物在線觀看| 精品久久蜜桃| 亚洲二三区| 中文字幕啪啪| 国产乱子伦视频在线播放| 91口爆吞精国产对白第三集| 欧美日本视频在线观看| 欧美一级专区免费大片| 美女免费精品高清毛片在线视| 99久久国产综合精品2023| 九九视频免费在线观看| 欧美精品另类| 超碰免费91| 亚洲午夜福利精品无码| 中文无码毛片又爽又刺激| 亚洲欧美h| 国产精品自在拍首页视频8 | 无码精油按摩潮喷在线播放| 国产毛片基地| 国产精品自在线天天看片| 爆操波多野结衣| 91探花在线观看国产最新| 欧美一级在线看| 国产在线97| 亚洲热线99精品视频| 国产导航在线| 538国产在线| 国产区免费精品视频| 青青热久免费精品视频6| 凹凸国产分类在线观看| 免费无码网站| 亚洲欧美一区二区三区蜜芽| 国产尤物在线播放| 久久国产精品波多野结衣| 亚洲精品福利网站| 亚洲国产高清精品线久久| 永久成人无码激情视频免费| 国内精品91| 国产av一码二码三码无码| 91在线高清视频| 怡红院美国分院一区二区| 中文字幕啪啪| 免费看美女自慰的网站| 日本黄色不卡视频| a在线观看免费|