隋璽仲,高長青
解放軍醫學院/解放軍總醫院 心血管外科,北京 100853
基質金屬蛋白酶及其抑制劑在風濕性二尖瓣狹窄合并心房纖顫中的作用
隋璽仲,高長青
解放軍醫學院/解放軍總醫院 心血管外科,北京 100853
心房纖顫是臨床上較為普遍的一種心律失常,心房纖顫時可加重風濕性二尖瓣瓣膜狹窄的程度。房顫對心臟瓣膜的破壞主要表現為細胞外基質正常結構被破壞,膠原沉積增多,各型膠原比例失調和排列紊亂。影響細胞外基質代謝的最主要的酶類是基質金屬蛋白酶(matrix metalloproteinases,MMPs)和金屬蛋白酶內源性組織抑制劑(tissue inhibitors of metalloproteinases,TIMPs)。心房纖顫時MMPs、TIMPs平衡失調使心臟瓣膜破壞,Ⅰ型和Ⅲ型膠原沉積增多,排列紊亂。MMP 9和TIMP 2是心房纖顫發生后MMPs和TIMPs中表達最具有意義的指標。本文通過對心房纖顫后心臟瓣膜組織中MMP 9和TIMP 2異常表達的研究進行綜述,以了解心房纖顫對風濕性二尖瓣瓣膜影響的程度。
風濕性心臟瓣膜??;心房纖顫;基質金屬蛋白酶;金屬蛋白酶內源性組織抑制劑
心房顫動(房顫)是一種臨床上最為常見的心律失常,中國房顫流行病學調查的結果顯示我國房顫患病率為0.77%,其發病率隨年齡的增長而明顯上升。35歲以上房顫的患病率男性為0.74%,女性為0.72%; 60歲以上男女患病率分別增長至1.83%和1.92%,且上升趨勢明顯[1]。風濕性心臟瓣膜病,尤其是二尖瓣狹窄的患者,常常表現為充血性心衰以及左心房擴大,這些均是引起房顫的極高危因素。心房纖顫可加重二尖瓣瓣膜的病變,破壞細胞外基質,使膠原沉積增多,膠原比例失調和排列紊亂[2]?;|金屬蛋白酶(matrix metalloproteinases,MMPs)和金屬蛋白酶內源性組織抑制劑(tissue inhibitors of metalloproteinases,TIMPs)是反映心房纖顫對二尖瓣瓣膜破壞程度的最重要酶類,其中MMP 9和TIMP 2是這些酶中表達最具有意義的指標,本文對其機制進行綜述[3]。
心房內正常血流動力學的表現為血流對二尖瓣瓣膜僅存在垂直方向的血流壓力,在左心室舒張時,二尖瓣開放,血流在二尖瓣表面產生垂直向下的壓力;在左心室收縮時,二尖瓣關閉,血液流動方向發生逆轉,血流在二尖瓣表面產生垂直向上的剪切力[4]。風濕性二尖瓣狹窄發生心房纖顫后,左心房內血液發生湍流,而湍流性血流對二尖瓣產生雜亂性剪切力,雜亂無序的合力直接造成瓣膜組織的損傷;此外湍流性血流導致血液黏性增大,在凝血因子、凝血酶原及纖維蛋白原等作用下,極易形成血栓。當血栓附著于二尖瓣瓣膜時,纖溶系統被激活,在分解瓣膜表面血栓的同時,破壞了瓣膜表面的黏膜,刺激瓣膜發生充血、水腫等炎性改變,炎性滲出物、纖維蛋白沉積、纖維素樣壞死導致二尖瓣瓣膜的僵硬、攣縮、鈣化,進一步加重風濕性二尖瓣瓣膜的病變[5]。
心房纖顫可促進二尖瓣瓣膜組織間質的膠原代謝增強,膠原沉積增多,各型膠原比例失調和排列紊亂[6]。心房纖顫導致心臟容量負荷或機械負荷增大,Ⅰ/Ⅲ型膠原比例失調,瓣膜膠原網架改建,瓣膜組織間質纖維化,加重了瓣膜組織的硬化與畸形程度[7]。Patel等[8]研究發現,心房纖顫發生后,心臟瓣膜組織中Ⅰ型膠原可增加15% ~40%,Ⅲ型膠原可增加10% ~ 35%,Ⅰ型、Ⅲ型膠原同時轉化為Ⅳ型膠原,Ⅳ型膠原的表達數量可較正常瓣膜組織中增加50% ~ 80%。
心房纖顫對心臟瓣膜分子結構的改變,主要表現為細胞外基質正常結構被破壞、膠原沉積增多、各型膠原比例失調和排列紊亂[9]。
2.1 細胞外基質(extracellular matrix,ECM) 細胞外基質是細胞與細胞之間的物質,是由大分子構成的錯綜復雜的網絡,與組織結構的完整性相關[10]。影響ECM代謝最主要的酶類是基質金屬蛋白酶和金屬蛋白酶內源性組織抑制劑11]。MMPs是一種Zn2+依賴性的中性蛋白酶結構,又稱為“鋅指結構”,其主要功能是與ECM的各種蛋白成分結合,降解和重構ECM,維持ECM的動態平衡[12]。TIMPs是MMPs的內源性特異性抑制劑,主要競爭性地抑制MMPs的Zn2+活性位點與蛋白質結合,抑制催化反應和啟動子的激活,形成較穩定的硫化螯合物,從而抑制MMPs活性和其蛋白水解活性[13-14]。
MMP 9是MMPs家族中的對心房纖顫反應較為敏感的指標,而TIMP 2是MMP 9的特異性抑制因子[15]。MMP 9的活性受到TIMP 2的嚴格調控,TIMP 2對MMP 9起特異性抑制作用,保持MMP 9/TIMP 2的穩態是保證心臟瓣膜內部分子結構穩定的關鍵[16]。在正常生理條件下,由于明膠和彈性蛋白的作用,機體二尖瓣瓣膜組織也可產生一定的纖維化和鈣化[17]。此時機體自身調節反應激活,MMP 9表達升高,以酶原形式分泌到細胞外,通過纖維蛋白溶酶與二尖瓣瓣膜組織中的明膠和彈性蛋白相結合,水解彈性蛋白和明膠,改善心臟瓣膜纖維化和鈣化[18]。MMP 9增高到一定程度后,TIMP 2被激活,TIMP 2水平升高,競爭性地與Zn2+結合,使MMP 9的蛋白結合位點被占據,抑制MMP 9的過度表達,使得MMP 9/TIMP 2保持穩態,心臟瓣膜內部分子結構穩定,保持心臟瓣膜的彈性與功能[19]。
2.2 膠原結構的異常 心房纖顫發生后,心臟瓣膜損傷加重,MMP 9的表達異常升高,TIMP 2受到心房纖顫影響,其表達受到抑制,MMP 9/TIMP 2的穩態破壞[20-21]。異常表達的MMP 9過度水解心臟瓣膜的彈性蛋白和明膠,導致心臟瓣膜組織結構破壞,大量纖維素生成,纖維蛋白沉積,與Ca2+結合后,心臟瓣膜發生僵硬、攣縮、鈣化,心臟瓣膜狹窄程度加重[22]。Chiao等[23]研究發現,房顫發生后,MMP 9的表達增加,TIMP 2的表達下降,MMP 9的活性蛋白表達可增加4 ~ 5倍,而TIMP 2的表達下降到40%左右。通過測定MMP 9和TIMP 2的表達程度,可反映出二尖瓣瓣膜組織中膠原蛋白以及纖維鈣化的改變程度[24]。
MMP 9/TIMP 2的基因轉錄表達水平失衡引起Ⅰ、Ⅲ、Ⅳ型膠原轉錄水平的改變,導致瓣膜組織中的Ⅰ型、Ⅲ型和Ⅳ膠原沉積增多,排列紊亂,是心房纖顫的風濕性二尖瓣組織間質纖維化的共同分子基礎[25]。心房纖顫的風濕性二尖瓣瓣膜組織中MMP 9的mRNA表達水平與Ⅰ、Ⅲ、Ⅳ型膠原的表達水平呈正相關,TIMP 2的mRNA表達水平與Ⅰ、Ⅲ、Ⅳ型膠原的表達水平呈負相關[26-27]。二尖瓣組織中MMP 9的表達上調,TIMP 2的表達下降,導致膠原mRNA表達增加,膠原纖維增加,大量增多的膠原纖維填充水腫的心臟瓣膜,導致膠原排列紊亂,瓣膜彈性喪失,加重瓣膜的纖維化和鈣化。Anné等[28]研究發現,在持續性心房纖顫影響下,二尖瓣瓣膜組織中的Ⅳ型膠原數量增多,mRNA表達增加,膠原蛋白表達較可增加5 ~ 6倍,活性蛋白亦可增加40%左右。
心房纖顫可影響血流動力學,MMP 9和TIMP 2是反映心房纖顫致細胞外基質結構破壞的特異性指標[29],心房纖顫可刺激MMP 9和TIMP 2的異常表達,MMP 9/TIMP 2表達水平失衡,破壞細胞外基質正常結構,膠原沉積增多,各型膠原比例失調和排列紊亂,導致瓣葉交界處粘連,瓣膜前后葉增厚,腱索及乳頭肌粘連、融合、攣縮,瓣葉纖維鈣化等改變,加重風濕性二尖瓣瓣膜狹窄的程度[29-30]。
1 Zhou Z, Hu D. An epidemiological study on the prevalence of atrial fibrillation in the Chinese population of mainland China[J]. J Epidemiol, 2008, 18(5):209-216.
2 Hinton RB, Yutzey KE. Heart valve structure and function in development and disease[J]. Annu Rev Physiol, 2011, 73 :29-46.
3 Hinton RB, Adelman-Brown J, Witt S, et al. Elastin haploinsufficiency results in progressive aortic valve malformation and latent valve disease in a mouse model [J] . Circ Res, 2010, 107 (4):549-557.
4 Tseng H, Grande-Allen KJ. Elastic fibers in the aortic valve spongiosa: a fresh perspective on its structure and role in overall tissue function[J]. Acta Biomater, 2011, 7(5):2101-2108.
5 Corradi D, Callegari S, Maestri R, et al. Differential structural remodeling of the left-atrial posterior wall in patients affected by mitral regurgitation with or without persistent atrial fibrillation:a morphological and molecular study[J]. J Cardiovasc Electrophysiol, 2012, 23(3):271-279.
6 Batini?-Haberle I, Rebou?as JS, Spasojevi? I. Superoxide dismutase mimics: chemistry, pharmacology, and therapeutic potential[J].Antioxid Redox Signal, 2010, 13(6):877-918.
7 Krishnamurthy VK, Guilak F, Narmoneva DA, et al. Regional structure-function relationships in mouse aortic valve tissue[J]. J Biomech, 2011, 44(1):77-83.
8 Patel P, Dokainish H, Tsai P, et al. Update on the association of inflammation and atrial fibrillation[J]. J Cardiovasc Electrophysiol,2010, 21(9):1064-1070.
9 Corradi D, Maestri R, Macchi E, et al. The atria: from morphology to function[J]. J Cardiovasc Electrophysiol, 2011, 22(2):223-235.
10 Gao Z, Kim GH, Mackinnon AC, et al. Ets1 is required for proper migration and differentiation of the cardiac neural crest[J].Development, 2010, 137(9):1543-1551.
11 Bukowska A, Lendeckel U, Bode-B?ger SM, et al. Physiologic and pathophysiologic role of calpain: implications for the occurrence of atrial fibrillation[J]. Cardiovasc Ther, 2012, 30(3):e115-e127.
12 Hurley JR, Balaji S, Narmoneva DA. Complex temporal regulation of capillary morphogenesis by fibroblasts[J]. Am J Physiol Cell Physiol, 2010, 299(2):C444-C453.
13 Kato K, Fujimaki T, Yoshida T, et al. Impact of matrix metalloproteinase-2 levels on long-term outcome following pharmacological or electrical cardioversion in patients with atrial fibrillation[J]. Europace, 2009, 11(3):332-337.
14 Wirrig EE, Hinton RB, Yutzey KE. Differential expression of cartilage and bone-related proteins in pediatric and adult diseased aortic valves[J]. J Mol Cell Cardiol, 2011, 50(3):561-569.
15 Chen H, Liu K, Chen LJ, et al. Genetic associations in polypoidal choroidal vasculopathy: a systematic review and meta-analysis[J].Mol Vis, 2012, 18 :816-829.
16 Wilton E, Bland M, Thompson M, et al. Matrix metalloproteinase expression in the ascending aorta and aortic valve[J]. Interact Cardiovasc Thorac Surg, 2008, 7(1):37-40.
17 Zeng R, Wen F, Zhang X, et al. Serum levels of matrix metalloproteinase 2 and matrix metalloproteinase 9 elevated in polypoidal choroidal vasculopathy but not in age-related macular degeneration[J]. Mol Vis, 2013, 19 :729-736.
18 Cambronero F, Marín F, Roldán V, et al. Biomarkers of pathophysiology in hypertrophic cardiomyopathy: implications for clinical management and prognosis[J]. Eur Heart J, 2009, 30(2):139-151.
19 Namwat N, Puetkasichonpasutha J, Loilome W, et al.Downregulation of reversion-inducing-cysteine-rich protein with Kazal motifs (RECK) is associated with enhanced expression of matrix metalloproteinases and cholangiocarcinoma metastases[J]. J Gastroenterol, 2011, 46(5):664-675.
20 Foronjy R, Nkyimbeng T, Wallace A, et al. Transgenic expression of matrix metalloproteinase-9 causes adult-onset emphysema in mice associated with the loss of alveolar elastin[J]. Am J Physiol Lung Cell Mol Physiol, 2008, 294(6):L1149-L1157.
21 Muir A, Greenspan DS. Metalloproteinases in Drosophila to humans that are central players in developmental processes[J]. J Biol Chem, 2011, 286(49):41905-41911.
22 Krishnamurthy VK, Opoka AM, Kern CB, et al. Maladaptive matrix remodeling and regional biomechanical dysfunction in a mouse model of aortic valve disease[J]. Matrix Biol, 2012, 31(3):197-205.
23 Chiao YA, Dai Q, Zhang J, et al. Multi-analyte profiling reveals matrix metalloproteinase-9 and monocyte chemotactic protein-1 as plasma biomarkers of cardiac aging[J]. Circ Cardiovasc Genet,2011, 4(4):455-462.
24 Chiao YA, Ramirez TA, Zamilpa R, et al. Matrix metalloproteinase-9 deletion attenuates myocardial fibrosis and diastolic dysfunction in ageing mice[J]. Cardiovasc Res, 2012, 96(3):444-455.
25 Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals[J].Nat Rev Mol Cell Biol, 2009, 10(2):126-139.
26 Koh YS, Chang K, Kim PJ, et al. A close relationship between functional polymorphism in the promoter region of matrix metalloproteinase-9 and acute myocardial infarction[J]. Int J Cardiol, 2008, 127(3):430-432.
27 Zhang B, Zhang J, Xu ZY, et al. Expression of RECK and matrix metalloproteinase-2 in ameloblastoma[J]. BMC Cancer, 2009, 9:427.
28 Anné W, Willems R, Roskams T, et al. Matrix metalloproteinases and atrial remodeling in patients with mitral valve disease and atrial fibrillation[J]. Cardiovasc Res, 2005, 67(4):655-666.
29 Zitka O, Kukacka J, Krizkova S, et al. Matrix metalloproteinases[J].Curr Med Chem, 2010, 17(31):3751-3768.
30 Lim CS, Shalhoub J, Gohel MS, et al. Matrix metalloproteinases in vascular disease--a potential therapeutic target?[J]. Curr Vasc Pharmacol, 2010, 8(1):75-85.
Effect of matrix metalloproteinases and tissue inhibitors of metalloproteinases on rheumatic mitral valve stenosis with atrial fi brillation
SUI Xi-zhong, GAO Chang-qing
Department of Cardiovascular Surgery, Chinese PLA General Hospital/Chinese PLA Medical College, Beijing 100853, China
Corresponding author: GAO Chang-qing. Email: gaochq301@yahoo.com
Atrial fibrillation is a common clinical arrhythmia, which could aggravate the rheumatic mitral valve stenosis. The pathomechanism for the mitral valve with atrial fi brillation includes the destruction of the structures of extracellular matrix and the deposition and disproportion of collagen. Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs)are the main enzymes that affect the extracellular matrix's metabolism. The disequilibrium between MMPs and TIMPs with atrial fibrillation make the extracellular matrix of atrial muscle degradation, typeⅠandⅢcollagen deposition and disarrangement.According to current findings, matrix metalloproteinase 9 and tissue inhibitor of metalloproteinase 2 are the most significant indicators in their terms. This study re fl ects that atrial fi brillation will aggravate the rheumatic mitral valve stenosis by analyzing the relationship between the abnormal expression of MMP 9 and TIMP 2.
rheumatic heart valve disease; atrial fi brillation; matrix metalloproteinases; tissue inhibitors of metalloproteinases
R 345
A
2095-5227(2014)05-0500-03
10.3969/j.issn.2095-5227.2014.05.028
時間:2014-04-01 17:48
http://www.cnki.net/kcms/detail/11.3275.R.20140401.1748.007.html
2013-12-16
國家高技術研究發展計劃(863)資助項目(2012AA021104)Supported by the National High Technology Research and Development Program of China(2012AA021104)
隋璽仲,男,在讀博士。Email: sxztiantang@163.com
高長青,主任醫師,教授。Email: gaochq301@yahoo.com