999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

3,5-二氨基苯甲酸構筑的Zn(Ⅱ)、Cd(Ⅱ)兩種配合物的合成及晶體結構

2014-06-14 10:34:00張美麗任宜霞陳小利閆洪濤
無機化學學報 2014年4期
關鍵詞:化學

張美麗 任宜霞 陳小利 閆洪濤

(1西北大學化學與材料科學學院,西安 710069)(2延安大學化學與化工學院,陜西省化學反應工程重點實驗室,延安 716000)

Recently,the chemistry of Zn(Ⅱ)and Cd(Ⅱ)complexes has attracted interest for a number of reasons.The Zn(Ⅱ) and Cd(Ⅱ) are d10electronic configuration and can adopt different coordination numbers from 4 to 6.Moreover,the Zn and Cd complexes offer not only the fascinating structure,but only a wide range of potential application in many aspects,such as optical,electricalconductivity,catalysis and even photoluminescent materials[1-4].Up to now,a large numbers of complexes formed by Zn(Ⅱ),Cd(Ⅱ) and various N-donor,aromatic/heterocyclic multicarboxylate ligands have been successfully synthesized and characterized[5-10]. However, the complex based on 3,5-diaminobenzoic acid with Zn(Ⅱ),Cd(Ⅱ) have never been reported before.

Inspired by our previous works[11],we employed 3,5-diaminobenzoic acid and Zn(Ⅱ) ,Cd(Ⅱ) to synthesize two novel complexes,namely,[Cd(diaba)(phen)2]NO3·H2O(1)and [Zn(diaba)(2,2′-bipy)2](2)(diaba=3,5-diaminobenzoic acid;phen=1,10-phenanthroline,2,2′-bipy=2,2′-bipyridine),which provides the first example of complex based on 3,5-diaminobenzoic acid-Zn(Ⅱ) ,Cd(Ⅱ).

1 Experimental

1.1 Materials and methods

The reagents and solvents employed were commercially available and used as received without further purification.Elemental analyses for carbon,hydrogen,and nitrogen were performed with a Vario EL III elemental analyzer.The FTIR spectra were recorded from KBr pellets in the range 4 000~400cm-1on a Bruker EQUINOX-55 spectrometer.Fluorescence spectra were performed on a Hitachi F-4500 fluorescence spectrophotometer at room temperature.Thermogravimetric analyses (TGA)were performed under nitrogen with a heating rate of 10 ℃·min-1usingaNETZSCH STA 449C thermogravimetric analyzer.

1.2 Syntheses of title complex

Single-crystal samples of complex 2 were obtained by the similar method as described for 1.

[Cd(diaba)(phen)2]NO3·H2O(1).1 was synthesized hydrothermally in a 23-mL teonlined autoclave by heating a mixture of Cd(NO3)2·6H2O(1.0 mmol),daba(1.0 mmol),phen (0.5 mmol),and H2O (8 mL)at 160℃for 4 days.After the reactive mixture was slowly cooled to room temperature,colorless block crystals of 1 were obtained (Yield:41%,based on Cd).Anal.Calcd.for C31H27O6N7Cd(%):C,52.74;H,3.85;N,13.89.Found(%):C,52.45;H,3.53;N,13.31.IR(cm-1):3 327(br),1 618(w),1 558(s),1 411(s),1 375(w),1 184(w),999(w),854(s),777(s).

[Zn(diaba)(2,2′-bipy)2](2).Yield:38%(based on Zn).Anal.Calcd.for C27H23N6O2Zn(%):C,61.32;H,4.38;N,15.89.Found(%):C,61.26;H,4.54;N,15.96.IR(cm-1):3 464(br),1 602(s),1 537(s),1 438(s),1 354(s),1 195(w),1 026(s),862(w),788(m).

1.3 Crystal structure determination

Diffraction intensities for the complexes 1 and 2 were collected at 293 K on a Bruker SMART 1000 CCD diffractometer employing graphite-monochromated Mo Kα radiation (λ=0.071 073nm).A semiempirical absorption correction was applied using the SADABS program[12].The structure was solved by direct methods and refined by full-matrix least-squares on F2using the SHELXS 97 and SHELXL 97 programs,respectively[13-14].Non-hydrogen atoms were refined anisotropically and hydrogen atoms were placed in geometrically calculated positions.The crystallographic data for complex 1 are listed in Table1,and selected bond lengths and angles are listed in Table2.

CCDC:936420,1;936421,2.

Table1 Crystallographic data for compounds 1 and 2

Continued Table1

Table2 Selected bond length(nm)and angles(°)for compounds 1 and 2

2 Result and discussion

2.1 Crystal structure of[Cd(diaba)(phen)2]NO3·H2O(1)

The structures ofthe two complexes were determined by single-crystal X-ray diffraction analyses.Complex 1 belongs to orthorhombic,space group Fddd.While complex 2 belongs to monoclinic with C2/c space group.

The crystalstructure of1 consists ofone crystallographic independent CdIIcation,one diaba ligand and two phen ligands.Each CdIIcation is surrounded by four nitrogen atoms from two 1,10-phen ligands,and two oxygen atoms from one diaba ligand,composing a distorted octahedron pyramidal geometry(Fig.1).The Cd-N bond lengths are 0.233 67(19),0.234 36(18)nm,respectively,and the Cd-O bond lengths are 0.233 2(2)nm,which drop into the normal scope of Cd-N and Cd-O bond lengths[15].The details are depicted in Table2.The deproton NO3-ions do not coordinate with the central atoms,acting as free ions in the crystal lattice to charge balance.At last the Cd octahedrons,crystal waters and NO3-ions construct the new 3D supramolecular network by intricate hydrogen bonds and weak π … π stacting interaction.

Fig.1 Coordination environments of Cd atom in complex 1

Fig.2 Coordination environments of Zn atom in complex 2

The structure of complex 2 is the same as complex 1,they are mononuclear structure.Each ZnIIion is six-coordinated to four nitrogen atoms of two 2,2′-bipy ligands and two oxygen atoms of one diaba ligand,fabricating a distorted octahedron pyramidal geometry (Fig.2).The Zn-N bond lengths are 0.210 82(16),0.212 01(16)nm,respectively,and the Zn-O bond lengths are 0.221 43(15)nm,which drop into the normal scope of Zn-N and Zn-O bond lengths[16].The 3D supramolecular network is also constructed via intricate hydrogen bonds and weak π…π stacting interaction.

2.2 Thermogravimetric analyses

Thermogravimetric analyses have been performed in air for 1 and 2 between 20 and 800℃(Fig.3,Fig.4).TGA curve of complex 1 illustrates that weight loss was observed for lattice water and NO3-ion up to 300℃;after this,significant weight loss occurred and endedatca.700℃,indicatingthecomplete decomposition of the complex to form CdO.This conclusion has been also supported by the percentage of the residues(18.03%),which is in accordance with the expected value (18.13%).For 2,there are not lattice and coordination water molecules and thus decomposition of the organic components occurs at 430℃,indicating the complete decomposition of the complex to form ZnO(Obsd:14.7%and Calcd:15.3%).

Fig.3 TGA curve for complex 1

Fig.4 TGA curve for complex 2

2.3 Fluorescent properties

Solid-state Luminescentemission spectra of complexes 1 and 2 are depicted in Fig.5.The intense broad photoluminescence emissions are found at 399 nm(λex=335 nm)for 1,at 395 nm(λex=325 nm)for 2.In order to understand the nature of the emission band,the photoluminescence property of free diaba ligand was measured with the observation of one weak emission at 367 nm (λex=300 nm).In comparison to the free ligand,most of the emission maxima of complexes 1 and 2 are changed,which are neither metal-to-ligand charge transfer(MLCT)nor ligand-tometal transfer (LMCT)in nature,since the ZnIIand CdIIions are difficult to oxidize or reduce.Thus,they may be assigned to intraligand (π-π*)fluorescent emission[17].Many aromatic ligands that are not strongly emissive themselves display significant luminescence when coordinated to ZnIIor CdII[18].The enhancement of luminescence is perhaps a result of the coordination effect of those ligands to the metal center,which effectively increases the rigidity of ligands,thereby reducing the non-radiative decay of the intraligand(π-π*)excited state[19].

Fig.5 Solid-state emission spectra of 1(low curve),2(tall curve)at room temperature

[1]Allendorf M D,Bauer C A,Bhaktaa R K,et al.Chem.Soc.Rev.,2009,38:1330-1352

[2]Rocha J,Carlos L D,Paza F A A,et al.Chem.Soc.Rev.,2011,40:926-940

[3]Karabach Y Y,Silva M F C G,Kopylovich M N,et al.Inorg.Chem.,2010,49:11096-11105

[4]XUE Ming(薛銘),CHEN Si-Ru(陳思如),GUO Li-Jia(郭莉佳),et al.Chem.J.Chinese Universities(高等學校化學學報),2012,33(9):1889-1894

[5]Ma L F,Wang L Y,Wang Y Y,et al.Inorg.Chem.,2009,48(3):915-924

[6]Ma L M,Li B,Sun X Y,et al.Anorg.Allg.Chem.,2010,636:1606-1611

[7]Xu C Y,Li L K,Wang Y P,et al.Cryst.Growth Des.,2011,5:1869-1879

[8]Sun D,Yan Z H,Blatov V A,et al.Cryst.Growth Des.,2013,13(3):1277-1289

[9]Zhang Z H,Chen S C,He M Y,et al.Cryst.Growth Des.,2013,13(3):996-1001

[10]HU Jing-Song(胡勁松),LIU Xi-Hui(劉希慧),SHI Jian-Jun(石建軍),et al.Chinese J.Inorg.Chem.(無機化學學報),2013,29(3):444-448

[11]Zhang M L,Li D S,Wang J J,et al.Dalton Trans.,2009,11:5355-5364

[12]Sheldrick G M.SADABS,A Program for Empirical Absorption Correction of Area detector Data,University of Gttingen,Germany,1997.

[13]Sheldrick G M.SHELXS 97,Program for Crystal Structure Solution,University of Gttingen,Germany,1997.

[14]Sheldrick G M.SHELXL 97,Program for Crystal Structure Refinement,University of Gttingen,Germany,1997

[15]Tian D,Pang Y,Zhou Y H,et al.CrystEngComm,2011,13:957-966

[16]Liu B,Yang G P,Wang Y Y,et al.Inorg.Chim.Acta,2011,367:127-134

[17]Wen L L,Dang D B,Duan C Y,et al.Inorg.Chem.,2005,44:7161-7170

[18]Bai H Y,Ma J F,Yang J,et al.Cryst.Growth Des.,2010,10:1946-1959

[19]Chang Z,Zhang A S,Hu T L,et al.Cryst.Growth Des.2009,9:4840-4846

猜你喜歡
化學
化學與日常生活
奇妙的化學
奇妙的化學
奇妙的化學
奇妙的化學
奇妙的化學
化學:我有我“浪漫”
化學:舉一反三,有效學習
考試周刊(2016年63期)2016-08-15 22:51:06
化學與健康
絢麗化學綻放
主站蜘蛛池模板: 欧美在线三级| 久久这里只有精品国产99| m男亚洲一区中文字幕| 日本成人不卡视频| 天天操天天噜| 亚洲水蜜桃久久综合网站 | a天堂视频| 性网站在线观看| 全色黄大色大片免费久久老太| 手机精品视频在线观看免费| 国产一区二区在线视频观看| 国产无码高清视频不卡| 久久99国产乱子伦精品免| 精品综合久久久久久97| 在线观看视频99| 久久这里只精品国产99热8| 亚亚洲乱码一二三四区| 久久五月视频| 国产福利微拍精品一区二区| 午夜视频www| 国产av一码二码三码无码| 欧美另类第一页| 亚洲福利网址| 日本不卡免费高清视频| 红杏AV在线无码| 国产成人无码综合亚洲日韩不卡| 欧美一道本| 国产高清毛片| 久久免费视频播放| 久久久久夜色精品波多野结衣| 在线观看国产精品日本不卡网| 欧美区国产区| 国产清纯在线一区二区WWW| 好久久免费视频高清| 国产人成在线观看| 三级毛片在线播放| 亚洲精品无码久久毛片波多野吉| 天堂网亚洲系列亚洲系列| 中文字幕亚洲另类天堂| 亚洲天堂精品在线观看| 国产麻豆精品手机在线观看| 最新国产麻豆aⅴ精品无| 亚洲性影院| av无码一区二区三区在线| av无码久久精品| 欧洲亚洲一区| 亚洲av日韩av制服丝袜| 亚洲日本中文字幕天堂网| 国产亚洲视频在线观看| 九九线精品视频在线观看| 精品无码国产一区二区三区AV| 免费看一级毛片波多结衣| 久久黄色影院| 国产精品无码影视久久久久久久| 国产超碰一区二区三区| 又猛又黄又爽无遮挡的视频网站| 欧美国产视频| 丝袜高跟美脚国产1区| 四虎永久免费地址在线网站| 日本午夜在线视频| 亚洲永久精品ww47国产| 91亚洲影院| 无码专区在线观看| 在线免费无码视频| 精品久久香蕉国产线看观看gif| 欧美天堂在线| 在线亚洲精品福利网址导航| 午夜视频免费一区二区在线看| 国产成人91精品| 亚洲无线国产观看| 一级毛片中文字幕| 成人福利在线视频免费观看| 欧美成人精品在线| 亚洲三级视频在线观看| 狠狠综合久久| 亚洲三级电影在线播放| 亚洲综合色婷婷| 精品伊人久久久大香线蕉欧美| 综合色亚洲| 91外围女在线观看| 国产成人区在线观看视频| P尤物久久99国产综合精品|