999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

3,5-二氨基苯甲酸構筑的Zn(Ⅱ)、Cd(Ⅱ)兩種配合物的合成及晶體結構

2014-06-14 10:34:00張美麗任宜霞陳小利閆洪濤
無機化學學報 2014年4期
關鍵詞:化學

張美麗 任宜霞 陳小利 閆洪濤

(1西北大學化學與材料科學學院,西安 710069)(2延安大學化學與化工學院,陜西省化學反應工程重點實驗室,延安 716000)

Recently,the chemistry of Zn(Ⅱ)and Cd(Ⅱ)complexes has attracted interest for a number of reasons.The Zn(Ⅱ) and Cd(Ⅱ) are d10electronic configuration and can adopt different coordination numbers from 4 to 6.Moreover,the Zn and Cd complexes offer not only the fascinating structure,but only a wide range of potential application in many aspects,such as optical,electricalconductivity,catalysis and even photoluminescent materials[1-4].Up to now,a large numbers of complexes formed by Zn(Ⅱ),Cd(Ⅱ) and various N-donor,aromatic/heterocyclic multicarboxylate ligands have been successfully synthesized and characterized[5-10]. However, the complex based on 3,5-diaminobenzoic acid with Zn(Ⅱ),Cd(Ⅱ) have never been reported before.

Inspired by our previous works[11],we employed 3,5-diaminobenzoic acid and Zn(Ⅱ) ,Cd(Ⅱ) to synthesize two novel complexes,namely,[Cd(diaba)(phen)2]NO3·H2O(1)and [Zn(diaba)(2,2′-bipy)2](2)(diaba=3,5-diaminobenzoic acid;phen=1,10-phenanthroline,2,2′-bipy=2,2′-bipyridine),which provides the first example of complex based on 3,5-diaminobenzoic acid-Zn(Ⅱ) ,Cd(Ⅱ).

1 Experimental

1.1 Materials and methods

The reagents and solvents employed were commercially available and used as received without further purification.Elemental analyses for carbon,hydrogen,and nitrogen were performed with a Vario EL III elemental analyzer.The FTIR spectra were recorded from KBr pellets in the range 4 000~400cm-1on a Bruker EQUINOX-55 spectrometer.Fluorescence spectra were performed on a Hitachi F-4500 fluorescence spectrophotometer at room temperature.Thermogravimetric analyses (TGA)were performed under nitrogen with a heating rate of 10 ℃·min-1usingaNETZSCH STA 449C thermogravimetric analyzer.

1.2 Syntheses of title complex

Single-crystal samples of complex 2 were obtained by the similar method as described for 1.

[Cd(diaba)(phen)2]NO3·H2O(1).1 was synthesized hydrothermally in a 23-mL teonlined autoclave by heating a mixture of Cd(NO3)2·6H2O(1.0 mmol),daba(1.0 mmol),phen (0.5 mmol),and H2O (8 mL)at 160℃for 4 days.After the reactive mixture was slowly cooled to room temperature,colorless block crystals of 1 were obtained (Yield:41%,based on Cd).Anal.Calcd.for C31H27O6N7Cd(%):C,52.74;H,3.85;N,13.89.Found(%):C,52.45;H,3.53;N,13.31.IR(cm-1):3 327(br),1 618(w),1 558(s),1 411(s),1 375(w),1 184(w),999(w),854(s),777(s).

[Zn(diaba)(2,2′-bipy)2](2).Yield:38%(based on Zn).Anal.Calcd.for C27H23N6O2Zn(%):C,61.32;H,4.38;N,15.89.Found(%):C,61.26;H,4.54;N,15.96.IR(cm-1):3 464(br),1 602(s),1 537(s),1 438(s),1 354(s),1 195(w),1 026(s),862(w),788(m).

1.3 Crystal structure determination

Diffraction intensities for the complexes 1 and 2 were collected at 293 K on a Bruker SMART 1000 CCD diffractometer employing graphite-monochromated Mo Kα radiation (λ=0.071 073nm).A semiempirical absorption correction was applied using the SADABS program[12].The structure was solved by direct methods and refined by full-matrix least-squares on F2using the SHELXS 97 and SHELXL 97 programs,respectively[13-14].Non-hydrogen atoms were refined anisotropically and hydrogen atoms were placed in geometrically calculated positions.The crystallographic data for complex 1 are listed in Table1,and selected bond lengths and angles are listed in Table2.

CCDC:936420,1;936421,2.

Table1 Crystallographic data for compounds 1 and 2

Continued Table1

Table2 Selected bond length(nm)and angles(°)for compounds 1 and 2

2 Result and discussion

2.1 Crystal structure of[Cd(diaba)(phen)2]NO3·H2O(1)

The structures ofthe two complexes were determined by single-crystal X-ray diffraction analyses.Complex 1 belongs to orthorhombic,space group Fddd.While complex 2 belongs to monoclinic with C2/c space group.

The crystalstructure of1 consists ofone crystallographic independent CdIIcation,one diaba ligand and two phen ligands.Each CdIIcation is surrounded by four nitrogen atoms from two 1,10-phen ligands,and two oxygen atoms from one diaba ligand,composing a distorted octahedron pyramidal geometry(Fig.1).The Cd-N bond lengths are 0.233 67(19),0.234 36(18)nm,respectively,and the Cd-O bond lengths are 0.233 2(2)nm,which drop into the normal scope of Cd-N and Cd-O bond lengths[15].The details are depicted in Table2.The deproton NO3-ions do not coordinate with the central atoms,acting as free ions in the crystal lattice to charge balance.At last the Cd octahedrons,crystal waters and NO3-ions construct the new 3D supramolecular network by intricate hydrogen bonds and weak π … π stacting interaction.

Fig.1 Coordination environments of Cd atom in complex 1

Fig.2 Coordination environments of Zn atom in complex 2

The structure of complex 2 is the same as complex 1,they are mononuclear structure.Each ZnIIion is six-coordinated to four nitrogen atoms of two 2,2′-bipy ligands and two oxygen atoms of one diaba ligand,fabricating a distorted octahedron pyramidal geometry (Fig.2).The Zn-N bond lengths are 0.210 82(16),0.212 01(16)nm,respectively,and the Zn-O bond lengths are 0.221 43(15)nm,which drop into the normal scope of Zn-N and Zn-O bond lengths[16].The 3D supramolecular network is also constructed via intricate hydrogen bonds and weak π…π stacting interaction.

2.2 Thermogravimetric analyses

Thermogravimetric analyses have been performed in air for 1 and 2 between 20 and 800℃(Fig.3,Fig.4).TGA curve of complex 1 illustrates that weight loss was observed for lattice water and NO3-ion up to 300℃;after this,significant weight loss occurred and endedatca.700℃,indicatingthecomplete decomposition of the complex to form CdO.This conclusion has been also supported by the percentage of the residues(18.03%),which is in accordance with the expected value (18.13%).For 2,there are not lattice and coordination water molecules and thus decomposition of the organic components occurs at 430℃,indicating the complete decomposition of the complex to form ZnO(Obsd:14.7%and Calcd:15.3%).

Fig.3 TGA curve for complex 1

Fig.4 TGA curve for complex 2

2.3 Fluorescent properties

Solid-state Luminescentemission spectra of complexes 1 and 2 are depicted in Fig.5.The intense broad photoluminescence emissions are found at 399 nm(λex=335 nm)for 1,at 395 nm(λex=325 nm)for 2.In order to understand the nature of the emission band,the photoluminescence property of free diaba ligand was measured with the observation of one weak emission at 367 nm (λex=300 nm).In comparison to the free ligand,most of the emission maxima of complexes 1 and 2 are changed,which are neither metal-to-ligand charge transfer(MLCT)nor ligand-tometal transfer (LMCT)in nature,since the ZnIIand CdIIions are difficult to oxidize or reduce.Thus,they may be assigned to intraligand (π-π*)fluorescent emission[17].Many aromatic ligands that are not strongly emissive themselves display significant luminescence when coordinated to ZnIIor CdII[18].The enhancement of luminescence is perhaps a result of the coordination effect of those ligands to the metal center,which effectively increases the rigidity of ligands,thereby reducing the non-radiative decay of the intraligand(π-π*)excited state[19].

Fig.5 Solid-state emission spectra of 1(low curve),2(tall curve)at room temperature

[1]Allendorf M D,Bauer C A,Bhaktaa R K,et al.Chem.Soc.Rev.,2009,38:1330-1352

[2]Rocha J,Carlos L D,Paza F A A,et al.Chem.Soc.Rev.,2011,40:926-940

[3]Karabach Y Y,Silva M F C G,Kopylovich M N,et al.Inorg.Chem.,2010,49:11096-11105

[4]XUE Ming(薛銘),CHEN Si-Ru(陳思如),GUO Li-Jia(郭莉佳),et al.Chem.J.Chinese Universities(高等學校化學學報),2012,33(9):1889-1894

[5]Ma L F,Wang L Y,Wang Y Y,et al.Inorg.Chem.,2009,48(3):915-924

[6]Ma L M,Li B,Sun X Y,et al.Anorg.Allg.Chem.,2010,636:1606-1611

[7]Xu C Y,Li L K,Wang Y P,et al.Cryst.Growth Des.,2011,5:1869-1879

[8]Sun D,Yan Z H,Blatov V A,et al.Cryst.Growth Des.,2013,13(3):1277-1289

[9]Zhang Z H,Chen S C,He M Y,et al.Cryst.Growth Des.,2013,13(3):996-1001

[10]HU Jing-Song(胡勁松),LIU Xi-Hui(劉希慧),SHI Jian-Jun(石建軍),et al.Chinese J.Inorg.Chem.(無機化學學報),2013,29(3):444-448

[11]Zhang M L,Li D S,Wang J J,et al.Dalton Trans.,2009,11:5355-5364

[12]Sheldrick G M.SADABS,A Program for Empirical Absorption Correction of Area detector Data,University of Gttingen,Germany,1997.

[13]Sheldrick G M.SHELXS 97,Program for Crystal Structure Solution,University of Gttingen,Germany,1997.

[14]Sheldrick G M.SHELXL 97,Program for Crystal Structure Refinement,University of Gttingen,Germany,1997

[15]Tian D,Pang Y,Zhou Y H,et al.CrystEngComm,2011,13:957-966

[16]Liu B,Yang G P,Wang Y Y,et al.Inorg.Chim.Acta,2011,367:127-134

[17]Wen L L,Dang D B,Duan C Y,et al.Inorg.Chem.,2005,44:7161-7170

[18]Bai H Y,Ma J F,Yang J,et al.Cryst.Growth Des.,2010,10:1946-1959

[19]Chang Z,Zhang A S,Hu T L,et al.Cryst.Growth Des.2009,9:4840-4846

猜你喜歡
化學
化學與日常生活
奇妙的化學
奇妙的化學
奇妙的化學
奇妙的化學
奇妙的化學
化學:我有我“浪漫”
化學:舉一反三,有效學習
考試周刊(2016年63期)2016-08-15 22:51:06
化學與健康
絢麗化學綻放
主站蜘蛛池模板: 美女无遮挡拍拍拍免费视频| 久久国产亚洲偷自| 精品人妻一区二区三区蜜桃AⅤ| 九九热免费在线视频| 波多野结衣久久精品| 永久免费无码日韩视频| 久久黄色小视频| 中文字幕av一区二区三区欲色| 红杏AV在线无码| 久久99热这里只有精品免费看| 国产91小视频| 精品人妻无码区在线视频| 91久久国产成人免费观看| 日韩第八页| 夜夜爽免费视频| 亚洲成a人片| 国产小视频免费观看| 欧美五月婷婷| 久久夜夜视频| 日韩成人在线视频| 中国国产一级毛片| 久久国产免费观看| 久久久噜噜噜久久中文字幕色伊伊 | 狠狠操夜夜爽| 久久毛片网| 九九热精品视频在线| 国产白浆在线| 日本人妻丰满熟妇区| 毛片视频网址| 69精品在线观看| 巨熟乳波霸若妻中文观看免费| 国产成a人片在线播放| 久久久成年黄色视频| 国产精品无码影视久久久久久久| 欧美激情视频二区三区| 日韩小视频在线播放| 久草国产在线观看| 国产成人精品日本亚洲| 日本在线欧美在线| 免费看美女毛片| 亚洲国产天堂在线观看| 久久婷婷五月综合97色| 国产毛片片精品天天看视频| 精品国产成人三级在线观看| 91午夜福利在线观看| 免费Aⅴ片在线观看蜜芽Tⅴ| 九九久久精品免费观看| 亚洲第一黄片大全| 欧美成人精品一级在线观看| 黄色网站在线观看无码| 日韩精品一区二区三区中文无码| 亚洲国产高清精品线久久| 久久亚洲国产视频| 国产情精品嫩草影院88av| 大香伊人久久| 国产电话自拍伊人| 色婷婷在线影院| 日韩无码真实干出血视频| A级全黄试看30分钟小视频| 亚洲美女久久| 色婷婷在线播放| 色妞www精品视频一级下载| 高清久久精品亚洲日韩Av| 久久国产精品麻豆系列| 99视频全部免费| 国产成人一区| 久久久久国产一级毛片高清板| 亚洲男人天堂网址| 亚洲美女一区| 亚洲视频免| 欧洲在线免费视频| 亚洲欧洲日本在线| 欧美五月婷婷| 婷婷午夜影院| 中文字幕在线观| 五月婷婷综合在线视频| 波多野结衣久久高清免费| 99在线观看国产| 欧美日韩成人在线观看| 欧美成人精品一级在线观看| 亚洲第一黄片大全| 国产精品一区二区在线播放|