馬翠,敖翔,龐劍飛,劉志敏
(1.第三軍醫(yī)大學(xué)a.數(shù)學(xué)與生物數(shù)學(xué)教研室;b.學(xué)員旅5營,重慶 400038; 2.中國人民解放軍73232部隊(duì)衛(wèi)生隊(duì),浙江舟山 316217)
基于優(yōu)先級(jí)的建筑外表面光伏電池鋪設(shè)優(yōu)化模型
馬翠1a,敖翔1b,龐劍飛2,劉志敏1b
(1.第三軍醫(yī)大學(xué)a.數(shù)學(xué)與生物數(shù)學(xué)教研室;b.學(xué)員旅5營,重慶 400038; 2.中國人民解放軍73232部隊(duì)衛(wèi)生隊(duì),浙江舟山 316217)
建筑外表面光伏電池的鋪設(shè)直接影響到其發(fā)電總量。首先對(duì)不同光伏電池的經(jīng)濟(jì)效益進(jìn)行分析并將其作為電池的選擇優(yōu)先級(jí),確定了房屋外表面鋪設(shè)各型號(hào)光伏電池的選擇優(yōu)先級(jí)序列;而后基于選擇優(yōu)先級(jí)序列,采用剩余矩形匹配算法對(duì)光伏電池的選擇及鋪設(shè)方式進(jìn)行計(jì)算,獲得光伏電池鋪設(shè)方案,從而建立基于優(yōu)先級(jí)的建筑外表面光伏電池鋪設(shè)優(yōu)化模型;最后,運(yùn)用2012年全國大學(xué)生數(shù)學(xué)建模競賽相關(guān)數(shù)據(jù)對(duì)模型進(jìn)行驗(yàn)證。結(jié)果表明:模型所確定的最優(yōu)光伏電池鋪設(shè)方案符合實(shí)際,經(jīng)濟(jì)效益大,具有較好的通用性和推廣價(jià)值。
太陽能;光伏電池;鋪設(shè)方案;優(yōu)先級(jí);剩余矩形匹配算法
太陽能是世界上最豐富的能源,將太陽能轉(zhuǎn)化為電能具有巨大的發(fā)展?jié)摿Γ型诓贿h(yuǎn)的未來解決現(xiàn)今的能源危機(jī)問題[1]。目前,在利用光伏電池實(shí)現(xiàn)太陽能發(fā)電的過程中,光伏電池是指通過光電效應(yīng)或光化學(xué)效應(yīng)直接把太陽能轉(zhuǎn)化為電能的裝置。常用的光伏電池有單晶硅電池、多晶硅電池和非晶硅薄膜電池3種類型[2]。為減少用地,光伏電池常鋪設(shè)在建筑物外表面(即光伏建筑)。由于房屋外表面面積一定,故如何挑選光伏電池并盡量鋪滿外表面從而使發(fā)電量最大便成為一個(gè)亟需解決的問題。本文基于優(yōu)先級(jí)的思想建立了房屋外表面光伏電池優(yōu)化鋪設(shè)模型,并運(yùn)用2012年全國大學(xué)生數(shù)學(xué)建模競賽B題的相關(guān)數(shù)據(jù)對(duì)該模型進(jìn)行驗(yàn)證,結(jié)果表明所建模型能較好地解決實(shí)際問題。
在建筑外表面鋪設(shè)光伏電池時(shí),需要解決電池種類的挑選以及外表面盡量鋪滿這兩個(gè)問題。對(duì)于前者,按照發(fā)電量盡可能大、單位發(fā)電量的費(fèi)用盡可能小的要求,計(jì)算出每種型號(hào)光伏電池在某面墻的太陽輻射總強(qiáng)度下的經(jīng)濟(jì)效益,并以此作為各型號(hào)光伏電池對(duì)于該面墻的選擇優(yōu)先級(jí),獲得光伏電池選擇優(yōu)先級(jí)序列;對(duì)于后者,考慮到一般房屋外表面與光伏電池均為矩形,故利用剩余矩形匹配算法獲得外表面光伏電池最大鋪滿方案。據(jù)此思路,本文建立了光伏電池優(yōu)化鋪設(shè)模型示意圖,見圖1。
1.1 建筑外表面逐時(shí)太陽輻射總強(qiáng)度的計(jì)算
一般氣象站臺(tái)提供的氣象數(shù)據(jù)都是水平面上逐時(shí)太陽總輻射強(qiáng)度的數(shù)據(jù),但光伏電池面常為傾斜面,關(guān)于傾斜面上逐時(shí)太陽總輻射強(qiáng)度的計(jì)算,本文按照現(xiàn)階段國際慣例,采用Klien和Theilacker提出的計(jì)算方法[3]:傾斜面上的太陽總輻射強(qiáng)度HT由直接太陽輻射量Hbt、天空散射輻射量Hdt和地面反射輻射量Hrt3部分組成,并認(rèn)為天空散射輻射量呈均勻分布。其計(jì)算公式如下:
式(1)中:ˉR為傾斜面上逐時(shí)平均太陽輻射量與水平面上逐時(shí)平均太陽輻射量的比值;ˉHd為水平面上逐時(shí)平均散射輻射量;ˉH為水平面上逐時(shí)平均總輻射量;β為傾斜面傾角;ρ為地面反射率,一般情況下,ρ=0.2;D為取值函數(shù),其表達(dá)式及相關(guān)參數(shù)意義詳見文獻(xiàn)[3]。
圖1 光伏電池優(yōu)化鋪設(shè)模型
對(duì)于赤道朝向的傾斜面,上述計(jì)算過程可簡化。在北半球,其逐時(shí)平均太陽總輻射量與水平面上逐時(shí)太陽平均總輻射量之比為
建筑外表面的逐時(shí)輻射總強(qiáng)度H(t)為
1.2 光伏電池選擇優(yōu)先級(jí)序列的求解
在實(shí)際情況中,常要求光伏電池發(fā)電總量盡可能大,而單位發(fā)電量的費(fèi)用盡可能小,滿足這兩者的直觀表現(xiàn)為經(jīng)濟(jì)效益最大。故本文選取各型號(hào)光伏電池的經(jīng)濟(jì)效益作為其相應(yīng)的選擇優(yōu)先級(jí)。
為方便計(jì)算各種型號(hào)光伏電池在某墻面光照條件下的選擇優(yōu)先級(jí)En,假設(shè)該外表面上全部安裝此型號(hào)的光伏電池,并求得在其使用壽命范圍內(nèi)所獲得的經(jīng)濟(jì)效益,以此作為En,其計(jì)算方式如下:
式(4)中:m1為居民電價(jià);S為外表面的面積;Sn為某型號(hào)光伏電池的面積;表示商值取整;l為光伏電池的最大使用壽命;ηn為某型號(hào)光伏電池的轉(zhuǎn)化效率。需要說明的是,不同種類的光伏電池有其特異的轉(zhuǎn)化效率計(jì)算方式,在實(shí)際中,ηn視情況而定;mn為某型號(hào)光伏電池的單塊價(jià)格。
根據(jù)上式可求得各型號(hào)光伏電池在某墻面光照條件下的選擇優(yōu)先級(jí)En,將其按照降序排列,即得到該建筑外表面的光伏電池選擇優(yōu)先級(jí)序列E。
1.3 基于光伏電池選擇優(yōu)先級(jí)序列的剩余矩形匹配算法對(duì)光伏電池最大鋪滿問題的求解
由于房屋外表面與光伏電池形狀一般均為矩形,故考慮使用剩余矩形匹配算法求解光伏電池最大鋪滿問題。但在本模型中強(qiáng)調(diào)優(yōu)先級(jí)思想的應(yīng)用,故此處需對(duì)剩余矩形匹配算法進(jìn)行修正,獲得基于光伏電池選擇優(yōu)先級(jí)序列的剩余矩形匹配算法,以對(duì)最大鋪滿問題進(jìn)行求解。
剩余矩形匹配算法[4-5]采用矩形集合Rj記錄放入零件j(第j次放入的零件)時(shí)材料所有可利用的區(qū)域,每個(gè)零件在排樣前都與矩形集合Rj中各個(gè)矩形區(qū)域進(jìn)行匹配度fjk計(jì)算(下述),依次將零件放入與之匹配度最大的矩形區(qū)域。具體過程如下:
以矩形的左下角和右上角坐標(biāo)記錄矩形的位置,并用rjk表示Rj中第k個(gè)矩形([(xjk,yjk),(Xjk,Yjk)]),每次排樣時(shí)均從剩余矩形的左下角放入,顯然在放入第一個(gè)零件時(shí)初始集合R1中的可利用區(qū)域僅包含矩形板材即R1=r11[(x11,y11),(X11,Y11)]。在放入零件2時(shí)剩余矩形集合中由于放入了零件1(寬w1,高h(yuǎn)1,且w1≥h1)而形成了2個(gè)可利用的矩形區(qū)域;當(dāng)橫向排入(零件的寬與剩余矩形底邊重合)零件1時(shí),如圖2所示,剩余矩形集合R2的計(jì)算公式為
豎向排入(零件高與剩余矩形底邊重合)時(shí),與圖2類似,剩余矩形集合R'2的計(jì)算公式為
以此類推,每次將待排零件j(寬w1,高h(yuǎn)1且w1≥h1)放入匹配度最高的剩余矩形rjk中,同時(shí)更新剩余矩形集合,除被選中的矩形k外其他矩形位置均不變,矩形k在被放入零件j后將產(chǎn)生2個(gè)新剩余矩形。當(dāng)板材所有可利用的區(qū)域不能再放入零件時(shí)增加板材,令剩余矩形集合為初始集合R1,并重新開始排放剩余的零件。
圖2 剩余矩形表示(橫排)
結(jié)合本模型,在對(duì)每個(gè)墻面采用上述算法時(shí),考慮到小屋某些墻面上有窗戶、房門等空缺,故在設(shè)置算法初始條件時(shí),就將這些空缺部分考慮成起始矩形。此外,根據(jù)已獲得的房屋外表面的光伏電池選擇優(yōu)先級(jí)序列。本文定義匹配度fjk的公式為
式(7)中:Ek為第k個(gè)矩形光伏電池在光伏電池選擇優(yōu)先級(jí)序列中所對(duì)應(yīng)的優(yōu)先級(jí);yjk為在房屋外表面以某一角為原點(diǎn)建立坐標(biāo)系,第k個(gè)矩形光伏電池矩形左下角坐標(biāo)的縱坐標(biāo)。
2012年高教杯全國大學(xué)生數(shù)學(xué)建模競賽B題為太陽能小屋的設(shè)計(jì)問題,要求給出小屋外表面的光伏電池最優(yōu)鋪設(shè)方案。本文利用其提供的相關(guān)數(shù)據(jù)[6],運(yùn)用上述模型,給出題中太陽能小屋屋頂前斜面的光伏電池優(yōu)化鋪設(shè)方案。
根據(jù)上文所建模型,對(duì)B題所附數(shù)據(jù)利用Matlab2012a進(jìn)行編程實(shí)現(xiàn),可得屋頂前斜面的太陽逐時(shí)輻射總強(qiáng)度、光伏電池選擇優(yōu)先級(jí)序列以及優(yōu)化鋪設(shè)方案,如表1、2和圖3所示。
表1 屋頂前斜面的逐時(shí)輻射總強(qiáng)度
表2 屋頂前斜面的光伏電池選擇優(yōu)先級(jí)序列
圖3 屋頂前斜面的光伏電池優(yōu)化鋪設(shè)方案
利用本模型還可求得屋頂前斜面上光伏電池的投資與收益,見表3。
表3 屋頂前斜面上光伏電池的投資與收益
本文建立的基于優(yōu)先級(jí)的建筑外表面光伏電池優(yōu)化鋪設(shè)模型,由于方法靈活且便于計(jì)算機(jī)編程實(shí)現(xiàn),可廣泛應(yīng)用于建筑外表面光伏電池優(yōu)化鋪設(shè)問題的求解或?qū)夥l(fā)電系統(tǒng)的評(píng)價(jià),具有較強(qiáng)的應(yīng)用性和推廣性。
[1]時(shí)艷俠,郭榮波,許曉輝,等.微藻太陽能電池的初步研究[J].可再生能源,2009,6(3):15-17.
[2]袁鎮(zhèn),賀立龍.太陽能電池的基本特性[J].現(xiàn)代電子技術(shù),2007(16):163-165.
[3]Klien S A,Theilacker JC.An algorithm for calculating monthly-averse radiation on inclined surfaces[J].Journal of Solar Energy Engineering,1981,103:2-33.
[4]曾鳳華.剩余矩形匹配算法在矩形件排樣中的應(yīng)用[J].機(jī)電工程技術(shù),2006,35(3):64-65.
[5]楊威.板材排樣優(yōu)化的計(jì)算智能方法研究[D].成都:四川大學(xué),2002.
[6]全國大學(xué)生數(shù)建模競賽組委會(huì).2012年高教杯全國大學(xué)生數(shù)學(xué)建模競賽賽題[EB/OL].http://www.mcm. edu.cn/problem/2012/2012.html.
(責(zé)任編輯 楊黎麗)
Optim ization Model of the Building Outside Surface of Photovoltaic Cells Laying Based on the Priority
MA Cui1a,AO Xiang1b,PANG Jian-fei2,LIU Zhi-min1b
(1.a.Department of Mathematics and Mathematical Biology;b.The Battalion 5 of Cadet Brigade,Third Military Medical University,Chongqing 400038,China; 2.Medical Unit of 73232 of the PLA,Zhoushan 316217,China)
The roll-out of the building outside surface of photovoltaic cells directly affect its total power generation.In this paper,firstly,the economic efficiency of photovoltaic cellswas analyzed as the selection priority of cells,and the priority sequence of the photovoltaic cells laying on building outside surface was determined.Based on that,remaining rectanglematching algorithm for the selection and laying of the photovoltaic cells were calculated.The laying scheme of the photovoltaic cells was obtained,so as to establish the optimization model of the building outside surface of photovoltaic cellslaying based on the priority.Finally,the actual use of the 2012 CUMCM’s data proved that the optimum photovoltaic cells laying plan determined by the established model has good economic benefits and value of application and popularity.
solar power energy;photovoltaic cells;laying scheme;priority;matching algorithm of remaining rectangular
TK511
A
1674-8425(2014)09-0112-05
10.3969/j.issn.1674-8425(z).2014.09.024
2014-03-13
國家大學(xué)生創(chuàng)新創(chuàng)業(yè)計(jì)劃(201390035019)
馬翠(1982—),女,碩士,講師,主要從事數(shù)學(xué)建模及智能計(jì)算研究;通訊作者敖翔(1992—),男,陜西安康人,主要從事數(shù)學(xué)模型的應(yīng)用及其研究。
馬翠,敖翔,龐劍飛,等.基于優(yōu)先級(jí)的建筑外表面光伏電池鋪設(shè)優(yōu)化模型[J].重慶理工大學(xué)學(xué)報(bào):自然科學(xué)版,2014(9):112-116.
format:MA Cui,AO Xiang,PANG Jian-fei,etal.Optimization Model of the Building Outside Surface of Photovoltaic Cells Laying Based on the Priority[J].Journal of Chongqing University of Technology:Natural Science,2014(9):112-116.