999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

數字離子阱質譜儀低質量截止值的改進方法

2014-07-10 21:48:57徐福興等
分析化學 2014年6期

徐福興等

摘 要 本研究在實驗室自制的線形數字離子阱質量分析器上,通過改變數碼電源的頻率掃描方式,在CID過程中,通過掃描數字束縛方波電源的頻率和數字激發方波的頻率實現母體解離。例如對于利血平母體離子,當將離子數字束縛方波頻率從500 kHz掃描到560 kHz,可以測量到低質荷比的碎片離子,成功實現了串級質譜分析的低質量碎片離子的分析。通過與利血平三重四極質譜串級質譜分析實驗結果的比較,發現可以在數字離子阱質譜儀上獲得與三重四極質譜相同的串級質譜測量結果。結果表明,本方法可以用于低質量離子的測量,克服了傳統離子阱質譜進行串級質譜分析的一個主要難點,顯著提高數字離子阱質譜的性能。

關鍵詞 離子阱質譜; 數字離子阱; 串級質譜; 低質量截止值; 頻率掃描; 質量范圍

1 引 言

質譜儀作為一種可以進行快速、高靈敏化學成分分析的科學儀器,應用領域越來越廣泛,已成為現代科學研究,以及生命科學、環境污染、食品安全、航天、冶金、地質、法醫等領域中不可或缺的科學工具[1~5]。

離子阱質譜是近年來被廣泛應用的一種質譜儀。它除了具有其它質譜儀所共有的高靈敏度,高質量分辨能力外,還具有結構簡單,體積小,使用方便等優點。離子存儲和串級質譜分析是離子阱質譜的獨特優點之一,它使得人們可以在一種單一的質譜儀上同時實現質譜分析和串級質譜分析,以同時獲得有關樣品組成和分子結構的多重信息[6~10]。此外,離子阱質譜由于其結構簡單、易加工、能耗小、工作氣壓高、在單一阱中就能串級質譜功能等優勢,推動了質譜小型化進程[3~5]。

離子阱質譜作串級質譜分析也存在明顯缺陷:在分析串級質譜結果時,低于母體離子質荷比一定比值的碎片離子測量不到,即所謂的低質量截止值(Low mass cutoff, LMCO) [11~15]。近年來,改進低質量截止已成為離子阱質譜研究中的主要內容之一。Yang等[12]通過優化qz值的方法實現低質量數碎片離子的檢測;Cunningham 等[13]采用假三重質譜分析的方法改進了低質量截止的效應;而Meany等[14]采用脈沖q值解離的方法同樣實現了對離子阱串級質譜分析中低質量數碎片產物的有效檢測。Racine 等[16]則通過采用熱解離母體離子的辦法降低離子測量低限。還有一些作者則采用光解離方法解離母體離子[17,18]。這些方法都可以有效地降低碎片離子測量過程中的低質量截止的效應,獲得更多有關母體離子結構的信息。

本實驗采用自制的線形數字離子阱質量分析器,通過改變數碼電源的頻率掃描方式,成功克服了離子阱質譜作串級質譜分析時所遇到的1/3低質量截止特性,實現了對串級質譜分析的低質量碎片離子的分析。通過與三重四極質譜串級質譜分析實驗結果的比較,發現可以在數字離子阱質譜儀上獲得與三重四極質譜相同的串級質譜測量結果。本方法解決了利用離子阱質譜進行串級質譜分析的一個主要傳統難點,可以顯著提高數字離子阱質譜的性能。

2 理論分析

離子阱質譜分析中的低質量截止值是指用離子阱質譜進行串級質譜分析時,如果碎片離子是經碰撞解離(Collisioninduced dissociation, CID) 方法產生的,則質荷比低于母體離子質荷比約1/3的碎片離子將無法被檢測到,也常被稱為三分之一定則。很顯然,由于低質量截止值的限制,將會導致串級質譜分析中約1/3質量范圍的碎片信息的丟失。在某些時候,低質量數離子信號的丟失將會直接影響分析小分子的結構和一些多肽的定量分析結果[12]。

報道的樣品利血平和五肽經三重四極質譜的串級質譜分析結果,可以看到其解離得到的碎片離子峰測量結果完全一致。表明本研究所提出的降低離子阱質譜低質量截止值(即LMCO)的方法完全可行, 實現了在離子阱質量分析器中得到低質量數的碎片離子峰信息, 有助于對母離子峰的性能分析。

5 結 論

在離子阱質量分析器中,采用傳統方法實現的碰撞誘導解離得到的利血平碎片譜圖質量數一般只能測到m/z 365。本研究在數字方波驅動離子阱的基礎上, 采用從低頻往高頻的掃描模式實現碰撞誘導解離,獲得了利血平低質量數碎片峰,最低可低于m/z 174,同時五肽GlyGlyPheLeuTyr最低碎片峰達到m/z 120,獲得了與三重四極質譜儀串級質譜同樣的碎片峰分布。本方法有效克服了低質量截止值的限制,豐富了用離子阱質譜儀進行串級質譜分析的分子結構信息,明顯提高了離子阱質量分析器串級質譜分析的性能。

References

1 Hager J M. Anal Bioanal Chem., 2004, 378(4): 845-850

2 Mayer P M, Poon C. Mass Spectrometry Review., 2009, 28(4) : 608-639

3 Wells J M, McLuckey S A. Biological Mass Spectrometry, 2005, 402: 148-185

4 Wang J. Mass Spectrometry Reviews., 2009, 28(1): 50-92

5 Robinson C V, Sali A, Baumeister W. Nature, 2007, 450(7172): 973-982

6 Schwartz J C, Senko M W, Syka J E P. Journal of the American Society for Mass Spectrometry, 2002, 13(6): 659-669

7 Hopfgartner G, Husser C, Zell M. Journal of Mass Spectrometry, 2003, 38(2): 138-150

8 Louris J N, Cooks R G, Syka J E P, Kelley P E, Stafford G C, Todd J F J. Anal. Chem., 1987, 59(13): 1677-1685

9 McLuckey S A. Journal of the American Society for Mass Spectrometry, 1992, 3(6): 599-614

10 Deng L, Kitova E N, Klassen J S. Journal of the American Society for Mass Spectrometry, 2013, 24(5): 988-996

11 Zhang M Y, Pace N, Kerns E H, Kleintop T, Kagan N, Sakuma T. Journal of Mass Spectrometry, 2005, 40(8): 1017-1029

12 Yang Y H, Lee K, Jang K S, Kim Y G, Park S H, Lee C S, Kim B G. Anal. Biochem., 2009, 387(1): 133-135

13 Cunningham C, Glish G L, Burinsky D J. Journal of the American Society for Mass Spectrometry, 2006, 17(1): 81-84

14 Meany D L, Xie H W, Thompson L V, Arriaga E H, Griffin T J. Proteomics., 2007, 7(7): 1150-1163

15 March R E. Quadrupole ion trap mass spectrometer, John Wiley & Sons. Inc.,Publication. New Jersey, 2005: 108

16 Racine A H, Payne A H, Remes P M, Glish G L. Anal. Chem., 2006, 28(13): 4609-4614

17 Payne A H, Glish G L. Anal Chem., 2001, 73(15): 3542-3548

18 Enyenihi A A, Griffiths J R, Glish G L. International Journal of Mass Spectrometry, 2011, 308(23): 260-264

19 Ding L, Brancia F L. Anal. Chem., 2006, 78: 1995

20 Ding L, Sudakov M, Brancia F L, Giles R, Kumashiro S. Journal of Mass Spectrometry, 2004, 39(5): 471-484

21 Wang L, Xu F X, Ding C F. Rapid Communications in Mass Spectrometry., 2012, 26(17): 2068-2074

22 LI XiaoXu, JIANG GongYu, DING Li, WANG YuanYuan, DING ChuanFan. Chinese J. Anal. Chem., 2009, 37(9): 1397-1402

李曉旭, 蔣公羽, 丁 力, 汪源源, 丁傳凡. 分析化學, 2009, 37(9): 1397-1402

23 XU FuXing,WANG Liang, DING ChuanFan. The 13th National Conference on Chemical Dynamics, 2013: 38

徐福興, 王 亮, 丁傳凡. 第十三屆全國化學動力學會議, 2013: 38

24 Song Q Y, Kothari S, Senko M A, Schwartz J C, Amy J W, Stafford G C, Cooks R G, Ouyang Z. Anal. Chem., 2006, 78(3): 718-725

25 Geddes K, Adamson G, Dube N, Crathern S, King R C. Rapid Communications in Mass Spectrometry., 2009, 23(9): 1303-1312

26 Brewer E, Henion J. Journal of Pharmaceutical Sciences., 1998, 87(4): 395-402

Improvement of Low Mass Cutoff Effect Using

Digital Ion Trap Technology

XU FuXing1, DING Li1, DAI XinHua2, FANG Xiang*2, DING ChuanFan*1

1(Department of chemistry and laser Chemistry Institute, Fudan University, Shanghai 200433, China)

2(National Institute of Metrology, Beijing 100081, China)

Abstract The low mass cutoff (LMCO) is the main weakness of ion trap when it performs tandem mass analysis by collision induced dissociation (CID). LMCO means that some daughter ions of m/z are less than about 1/3 of the m/z of parent ion could not be detected during the tandem mass spectrometry processing. A new method which can significantly improve the effect of low mass cutoff was proposed and investigated. By simply changing the scan method of digital potential frequency, some low mass ions can be effectively observed during the tandem mass spectrometric experiment. In the experiment, the frequency of the digital ion trapping power and ion activation power were scanned from lower value to higher value, and some lower mass product ions could be detected during CID process. For example, some lower mass ions were observed during the CID of reserpine precursor ion when the frequency of its digital trapping power was scanned from 500 kHz to 560 kHz. The tandem mass spectra of Reserpine ion showed that the experimental results both from this work and the triple quadrupole mass spectrometer were exactly the same.

Keywords Ion trap mass analyzer; Digital ion trap; Tandem mass analysis; Low mass cutoff; Frequency scanning; Mass range

(Received 20 December 2013; accepted 2 March 2014)

Abstract The low mass cutoff (LMCO) is the main weakness of ion trap when it performs tandem mass analysis by collision induced dissociation (CID). LMCO means that some daughter ions of m/z are less than about 1/3 of the m/z of parent ion could not be detected during the tandem mass spectrometry processing. A new method which can significantly improve the effect of low mass cutoff was proposed and investigated. By simply changing the scan method of digital potential frequency, some low mass ions can be effectively observed during the tandem mass spectrometric experiment. In the experiment, the frequency of the digital ion trapping power and ion activation power were scanned from lower value to higher value, and some lower mass product ions could be detected during CID process. For example, some lower mass ions were observed during the CID of reserpine precursor ion when the frequency of its digital trapping power was scanned from 500 kHz to 560 kHz. The tandem mass spectra of Reserpine ion showed that the experimental results both from this work and the triple quadrupole mass spectrometer were exactly the same.

Keywords Ion trap mass analyzer; Digital ion trap; Tandem mass analysis; Low mass cutoff; Frequency scanning; Mass range

(Received 20 December 2013; accepted 2 March 2014)

Abstract The low mass cutoff (LMCO) is the main weakness of ion trap when it performs tandem mass analysis by collision induced dissociation (CID). LMCO means that some daughter ions of m/z are less than about 1/3 of the m/z of parent ion could not be detected during the tandem mass spectrometry processing. A new method which can significantly improve the effect of low mass cutoff was proposed and investigated. By simply changing the scan method of digital potential frequency, some low mass ions can be effectively observed during the tandem mass spectrometric experiment. In the experiment, the frequency of the digital ion trapping power and ion activation power were scanned from lower value to higher value, and some lower mass product ions could be detected during CID process. For example, some lower mass ions were observed during the CID of reserpine precursor ion when the frequency of its digital trapping power was scanned from 500 kHz to 560 kHz. The tandem mass spectra of Reserpine ion showed that the experimental results both from this work and the triple quadrupole mass spectrometer were exactly the same.

Keywords Ion trap mass analyzer; Digital ion trap; Tandem mass analysis; Low mass cutoff; Frequency scanning; Mass range

(Received 20 December 2013; accepted 2 March 2014)

主站蜘蛛池模板: 大香伊人久久| 一级福利视频| 午夜欧美理论2019理论| 狠狠色综合久久狠狠色综合| 精品人妻无码区在线视频| 尤物精品视频一区二区三区| 欧美在线精品一区二区三区| 久久青青草原亚洲av无码| 免费毛片在线| 在线精品视频成人网| 欧美在线导航| 国产成人a毛片在线| 青青草国产免费国产| 伊人久久久大香线蕉综合直播| 色婷婷电影网| 亚洲中文久久精品无玛| 国产美女无遮挡免费视频| 全免费a级毛片免费看不卡| 国产精品私拍在线爆乳| 蜜桃视频一区| 精品一区国产精品| 欧美www在线观看| 久草视频一区| 日韩午夜福利在线观看| 91久久精品日日躁夜夜躁欧美| 日韩专区第一页| 亚洲日韩精品欧美中文字幕 | 亚洲欧美不卡中文字幕| 亚洲中文精品人人永久免费| 成人日韩视频| 尤物成AV人片在线观看| 成年人久久黄色网站| 她的性爱视频| 在线观看热码亚洲av每日更新| 国产成人在线小视频| 欧美va亚洲va香蕉在线| 手机在线免费不卡一区二| 大学生久久香蕉国产线观看| 欧美日一级片| 在线看免费无码av天堂的| 91在线播放国产| 免费无遮挡AV| 广东一级毛片| 狠狠躁天天躁夜夜躁婷婷| 婷婷午夜天| 91麻豆精品视频| 有专无码视频| 亚洲成a人片| 久久免费视频6| 日韩成人在线网站| 青青草原国产av福利网站| 无码精品国产dvd在线观看9久| 农村乱人伦一区二区| 欧美日韩免费| 精品视频福利| 亚洲第一在线播放| 亚洲国产精品日韩av专区| 一级片免费网站| 91视频99| 波多野结衣中文字幕久久| 91午夜福利在线观看| 免费网站成人亚洲| 全部无卡免费的毛片在线看| 精品一区二区三区水蜜桃| 中国精品自拍| 午夜国产大片免费观看| 亚洲AV电影不卡在线观看| 国产高清在线精品一区二区三区| 四虎永久免费在线| 久久网综合| 五月婷婷导航| 免费无码网站| 欧美国产综合视频| 国产在线视频二区| 999精品在线视频| 国产区免费| 91高清在线视频| 999精品在线视频| 国产视频大全| 成人国产免费| 无码丝袜人妻| 91精品国产91欠久久久久|