999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Triebel-Lizorkin Spaces and Besov Spaces Associated with Different Homogeneities and Boundedness of Composition Operators

2014-07-18 11:55:35WangHongbin
淄博師專論叢 2014年4期

Wang Hongbin

(Department of Mathematical and Physical Science, Zibo Normal College, Zibo 255130, China)

Triebel-Lizorkin Spaces and Besov Spaces Associated with Different Homogeneities and Boundedness of Composition Operators

Wang Hongbin

(Department of Mathematical and Physical Science, Zibo Normal College, Zibo 255130, China)

In this paper, the author introduces new Triebel-Lizorkin spaces and Besov spaces associated with different homogeneities and proves that the composition of two Calderón-Zygmund singular integral operators with different homogeneities is bounded on these new Triebel-Lizorkin spaces and Besov spaces.

Triebel-Lizorkin spaces; Besov spaces; Calderón-Zygmund operators; composition; discrete Calderón’s identity

1 Introduction and statement of main results

Forx=(x′,xn)∈n-1×and δ>0, we consider two kinds of homogeneities onN

δ°e(x′,xn)=(δx′,δxn),

δ°h(x′,xn)=(δx′,δ2xn).

The first are the classical isotropic dilations occurring in the classical Calder n-Zygmund singular integrals, while the second are non-isotropic and related to the heat equations (also Heisenberg groups). Lete(ζ) be a function onnhomogeneous of degree 0 in the isotropic sense and smooth away from the origin. Similarly, suppose thatH(ζ)is a function onnhomogeneous of degree 0 in the non-isotropic sense, and also smooth away from the origin. Then it is well-known that the Fourier multipliersT1defined by(ζ)=e(ζ)(ζ)andT2givenby(ζ)=h(ζ)(ζ) are both bounded onLpfor 1

To state more precisely our main results, we first recall some notions and notations. Forx=(x′,xm)∈m-1×we denote |x|e=(|x′|2+|xm|2)and |x|h=(|x′|2+|xm|.Wealsousenotationsj∧k=min{j,k}andj∨k=max{j,k}.LetΨ(1)∈s(m)with

(1.1)

(1.3)

(1.5)

where the convergence of series inL2(m) andS′/P(m) (the space of tempered distributions modulo polynomials) follows from the results in the classical case. See [1] for more details.

Now, we give the definition of Triebel-Lizorkin spaces and Besov spaces associated with different homogeneities.

Definition 1.1 Let 0

where

where

Thesingularintegralsconsideredinthispaperaredefinedby

Definition 1.2 A locally integrable functionK1onRn{0} is said to be a Calderón- Zygmund kernel associated with the isotropic homogeneity if

(1.6)

for all |α|≥0 and

(1.7)

for all 0

We say that an operatorT1is a Calderón-Zygmund singular integral operator associated with the isotropic homogeneity ifT1(f)(x)=p.v.(K1*f)(x), whereK1satisfies conditions of (1.6) and (1.7).

(1.8)

forall|α|≥0,β≥0and

and

(1.9)

forall0

WesaythatanoperatorT2isaCalderón-Zygmundsingularintegraloperatorassociatedwiththenon-isotropichomogeneityifT2(f)(x)=p.v.(K2*f)(x),whereK2satisfiesconditionsof(1.8)and(1.9).

Ourmainresultsarethefollowing

Theorem 1.1 LetT1andT2be Calder n-Zygmund singular integral operators with isotropic and non-isotropic homogeneity, respectively. Then for 0

2 Some lemmas

Intheproofofourmainresult,wewillusethefollowinglemmas.

×Ψj,k(x′-2-(j∧k)l′,xm-2-(j∧2k)lm),

where the series converges inL2(m),S∞(m),andS′/P(m).

Lemma 2.2 (Almost orthogonality estimates[2]) Suppose thatΨj,kandφj′,k′satisfy the same conditions in (1.1)-(1.4). Then for any given integersLandM, there exists a constantC=C(L,M)>0 such that

DenotebyMsthestrongmaximaloperatordefinedby

wherethesupremumistakenoverallopenrectanglesinmthatcontainthepointx.

SimilartotheproofofLemma3.2in[2],wehavethefollowingestimateofthediscreteversionofthemaximalfunction.

Lemma 2.3 LetI,I′be dyadic cubes inm-1andJ,J′be dyadic intervals inwith the side lengthsl(I)=2-(j∧k),l(I′)=2-(j′∧k′)andl(J)=2-(J∧2k),l(J′)=22(j′∧2k′), and the left lower corners ofI,I′and the left end points ofJ,J′ are 2-(j∧k)l′,2-(j′∧k′)l″,2-(j∧2k)lmand,respectively.Thenforanyu′,v′∈I,um,vm∈J,any0

whereC1=C2(m-1)(1/δ-1)(j′∧k′-j∧k)+2(1/δ-1)(j′∧2k′-j∧2k)+and (a-b)+=max{a-b,0}.

and

whereMisafixedlargepositiveintegerdependingonp,qands.Wealsoletφ(2)∈S(m)withsuppφ(2)?B(0,1),

and

ThediscreteCalderón-typeidentityisgivenbythefollowing

Lemma 2.4 Letφ(1)andφ(2)satisfy conditions from (2.1) to (2.4) and Let 0

×(φj,k*h)(2-(j∧k)-Nl′,2-(j∧2k)-Nlm),

wheretheseriesconvergesinL2(m),I are dyadic cubes inm-1andJare dyadic intervals inwith side-lengthl(I)=2-(j∧k)-Nandl(J)=2-(j∧2k)-N, and the left lower corners of I and the left end points of J are 2-(j∧k)-Nl′ and 2-(j∧2k)-Nlm, respectively. Moreover,

and

Proof By taking the Fourier transform, we have that forf∈L2(m),

Applying Coifman's decomposition of the identity operator, we obtain

×(φj,k*f)(2-(j∧k)-Nl′, 2-(j∧2k)-Nlm)+RN(f)(x′,xm)

∶=TN(f)(x′,xm)+RN(f)(x′,xm),

where

wheretheseriesIare dyadic cubes inm-1andJare dyadic intervals inwith side-lengthl(I)=2-(j∧k)-Nandl(J)=2-(j∧2k)-N, and the left lower corners ofIand the left end points ofJare 2-(j∧k)-Nl′ and 2-(j∧2k)-Nlm, respectively.

Similar to the proof of Theorem 4.1 in [2], we only need to prove

whereCistheconstantindependentoffandN.

Thisproves(2.8)andhenceLemma2.4follows.

Similarly,toshowTheorem1.2,weneed

Lemma 2.5 Let φ(1)and φ(2)satisfy conditions from (2.1) to (2.4) and let 0

×(φj,k*h)(2-(j∧k)-Nl′,2-(j∧2k)-Nlm),

wheretheseriesconvergesinL2,Iare dyadic cubes inm-1andJare dyadic intervals inwith side-lengthl(I)=2-(j∧k)-Nandl(J)2-(j∧2k)-N, and the left lower corners ofIandtheleftendpointsofJare 2-(j∧k)-Nl′ and 2-(j∧2k)-Nlm, respectively. Moreover,

and

whereCis the constant independent offandN.

3 Proof of Theorem 1.1

Theorem 3.1 Let 0

Proof Letf∈S′/P(m). We denotexI=2-(j∧k)l′ ,xJ=2-(j∧2k)lm,xI′=2-(j′∧k′)l″ andxJ′=.DiscreteCaldern'sidentityonS′/P(m)andthealmostorthogonalityestimatesyieldthatfor<δ

whereinthelastinequalityweusethefactsthat(j′∧k′-j∧k)+≤|j-j′|(k-k′|,(j′∧2k′-j∧2k)+≤|j-j′|+2|k-k′|andwehavechosenL>max{m(1/δ-1)+|s1|,(m+1)(1/δ-1)+|s2|}sothat

Applying Fefferman-Stein's vector-valued strong maximal inequality onLp/δ(lq/δ)yields

Bysymmetry,wegettheconverseinequality.HencetheproofofTheorem3.1iscomplete.

AsaconsequenceofTheorem3.1, L2(m)∩(m)isdensein(m).Indeed,wehavethefollowing

Corollary 3.1 Let 0

E={(j,k,l′,lm)∶|j|≤N,|k|≤N,|l′|≤N,|lm|≤N}

and

×Ψj,k(x′-2-(j∧k)l′,xm-2-(j∧2k)lm),

whereΨj,kare the same as Lemma 2.1.

SinceΨj,k∈S∞(m), we obviously havefN∈S∞(m). Repeating the same proof as in Theorem 3.1, we can conclude that≤C.ToseethatfNtendstofinm),bythediscreteCaldern'sidentityinS′/P(m)inLemma2.1,

×Ψj,k(x′-2-(j∧k)l′,xm-2-(j∧2k)lm),

wheretheseriesconvergesinS′/P(m).

Therefore,

Arguing as in the proof of Theorem 3.1, we derive

Repeating the same proof as in Theorem 3.1, we have

Corollary 3.2 Let 0

whereφj,k,φj′,k′,handNarethesameasinLemma2.4.

SimilartotheproofofTheorem1.7in[2],wehave

4 Proof of Theorem 1.2

Theorem 4.1 Let 0

Proof Letf∈S′/P(m). We denotexI=2-(j∧k)l′,xJ=2-(j∧2k)lm,xI′=2-(j′∧k′)l″ andxJ′=. Discrete Calderón's identity onS′/P(m) and the almost orthogonality estimates yield that for<δ

|Ψj,k*f(xI,xJ)|

When1≤q<∞,applyingH?lderinequalityandwhen0

where in the last inequality we use the facts that (j′∧k′-j∧k)+≤|j-j′|+|k-k′|,

(j′∧2k′-j∧2k)+≤|j-j′|+2|k-k′|,and we have chosenL>max{m(1/δ-1)+|s1|,(m+1)(1/δ-1)+|s2|} so that

TheproofofTheorem4.1iscomplete.

AsaconsequenceofTheorem4.1, L2(m)∩(m)isdensein(m). Indeed we have the following

Corollary 4.1 Let 0

E1={(j,k)∶|j|≤N,|k|≤N},E2={(l′,lm)∶|l′|≤N,|lm|≤N},

and

×Ψj,k(x′-2-(j∧k)l′,xm-2-(j∧2k)lm)

whereΨj,kare the same as Lemma 2.1.

SinceΨj,k∈S∞(m), we obviously havefN∈S∞(m). Repeating the same proof as in Theorem 4.1, we conclude that≤C.ToseethatfNtendstofinm),bythediscreteCaldern'sidentityinS′/P(m)inLemma2.1,

×Ψj,k(x′-2-(j∧k)l′,xm-2-(j∧2k)lm)

wheretheseriesconvergesinS′/P(m).

RepeatingthesameproofofTheorem4.1,wehave

Corollary 4.2 Let 0

whereφj,k*φj′,k′handNarethesameasinLemma2.5.

[1] M. Frazier and B. Jawerth, A discrete transform and decomposition of distribution, J. Func. Anal. 93 (1990), 34-170.

[2] Y. Han, C.-C. Lin, G. Lu, Z. Ruan and E. Sawyer, Hardy spaces associated with different homogeneities and boundedness of composition operators, Rev. Mat. Iberoam. 29 (2013), 1127-1157.

[3] D. H. Phong and E. M. Stein, Some further classes of pseudo-differential and singular-integral operators arising in boundary-value problems I, composition of operators, Amer. J. Math. 104 (1982), 141-172.

[4] S. Wainger and G. Weiss, Proceedings of Symp. in Pure Math. 35 (1979).

[5] X. Wu, Weighted Carleson Measure Spaces Associated with Different Homogeneities, Canad. J. Math.(2013), doi: 10.4153/CJM-2013-02-11.

(責任編輯:胡安波)

2014-06-21

王洪彬(1981-),男,山東淄博人,博士,淄博師范高等專科學校數理系教師,主要從事調和分析方向研究。

O174.2

A

(2014)04-0049-10

注:本文為淄博師范高等專科學校校級課題“變指標Herz型空間中算子的有界性”[13xk023]的階段性研究成果。

主站蜘蛛池模板: 国产日韩欧美一区二区三区在线| 国产原创演绎剧情有字幕的| 伊人久久大香线蕉综合影视| 亚洲视频无码| 波多野结衣二区| 欧美在线导航| 欧美成人午夜视频| 老熟妇喷水一区二区三区| a色毛片免费视频| a级毛片免费网站| 中日韩欧亚无码视频| 狼友视频国产精品首页| 国产丝袜第一页| 一本一道波多野结衣av黑人在线| 国产精品无码一二三视频| 国产91麻豆视频| a级毛片免费在线观看| 久久国产免费观看| 欧美成人午夜在线全部免费| 亚洲国产91人成在线| 久无码久无码av无码| 国产在线观看91精品亚瑟| 91年精品国产福利线观看久久 | 激情六月丁香婷婷四房播| 台湾AV国片精品女同性| 久草热视频在线| 欧洲亚洲欧美国产日本高清| 亚洲精品成人片在线观看| 亚洲爱婷婷色69堂| 亚洲天堂免费| 国产第一页屁屁影院| 一级毛片网| 久久精品亚洲中文字幕乱码| 国产成人乱码一区二区三区在线| 日韩精品成人网页视频在线| 亚洲综合第一区| 国产自在线播放| 色偷偷男人的天堂亚洲av| 亚洲午夜福利在线| 欧美成人h精品网站| 国产jizzjizz视频| 97在线碰| 人妻一本久道久久综合久久鬼色| 国产在线视频二区| 内射人妻无套中出无码| 久草网视频在线| 精品福利视频网| 免费看av在线网站网址| 福利在线免费视频| 国产幂在线无码精品| 国产成a人片在线播放| 国产草草影院18成年视频| 狠狠v日韩v欧美v| 色婷婷亚洲综合五月| 在线永久免费观看的毛片| 亚洲一级毛片在线观播放| 久久伊人操| 国产在线精品香蕉麻豆| 久青草免费视频| 成人a免费α片在线视频网站| 久久久亚洲国产美女国产盗摄| 热99re99首页精品亚洲五月天| 日韩成人在线视频| 亚洲精品免费网站| 91精品视频在线播放| 国产偷国产偷在线高清| 天天做天天爱天天爽综合区| 四虎影视国产精品| av在线无码浏览| 亚洲一区二区视频在线观看| 99久久精品国产麻豆婷婷| 97国产成人无码精品久久久| 国产在线观看成人91| 国产成人福利在线视老湿机| 最新国产高清在线| 丁香婷婷久久| 亚洲日本中文字幕乱码中文| 亚洲大尺度在线| 亚洲自偷自拍另类小说| 黄色国产在线| 中文字幕中文字字幕码一二区| 婷婷激情亚洲|