999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

門式剛架結(jié)構(gòu)的可靠度分析

2014-07-24 19:59:56郭海龍
中國建筑科學(xué) 2014年5期
關(guān)鍵詞:體系結(jié)構(gòu)

摘 要:對某單層廠房的鋼筋混凝土門式剛架結(jié)構(gòu),本文從結(jié)構(gòu)失效模式、極限狀態(tài)方程(功能函數(shù))、功能函數(shù)的相關(guān)性、可靠指標(biāo)(失效概率)求法等方面論述了對其中的一榀門式剛架進行可靠度分析。

關(guān)鍵詞:門式剛架結(jié)構(gòu);可靠度分析

引言

目前,結(jié)構(gòu)設(shè)計規(guī)范只考慮結(jié)構(gòu)的一個部件,一個截面或者一個局部區(qū)域的可靠度,還沒有考慮整個結(jié)構(gòu)體系的可靠度。事實上,一個結(jié)構(gòu)往往是由許多構(gòu)件或者部件組成;特別是抗震結(jié)構(gòu),一個截面、一個部件或者局部的損壞,并不標(biāo)志整個結(jié)構(gòu)體系的倒塌。所以基于結(jié)構(gòu)體系的可靠度研究更有實際意義。

1.結(jié)構(gòu)失效模式

剛架的失效一般是逐步形成塑性鉸,從而成為機構(gòu)造成的。剛架失效即機構(gòu)的形成一般按以下方式產(chǎn)生:當(dāng)某一截面失效后,在該截面形成塑性鉸,從而形成了新的結(jié)構(gòu)形式,結(jié)構(gòu)總剛度有所降低,并且內(nèi)力發(fā)生重分布,以至于下一個塑性鉸出現(xiàn)。照此下去,當(dāng)機構(gòu)出現(xiàn)時,結(jié)構(gòu)體系的剛度為零。此外,對于超靜定次數(shù)為r的結(jié)構(gòu),當(dāng)塑性鉸個數(shù)達到r+1時,結(jié)構(gòu)的自由度為1,屬于可變體系,從而形成了機構(gòu)。

剛架的失效機構(gòu)可以認為是由一些基本機構(gòu)的線性組合而成的。設(shè)剛架可能形成的基本機構(gòu)數(shù)為N,則N=可能塑性鉸個數(shù)-剛架的多余約束數(shù)。有N個基本機構(gòu)的剛架體系,其單自由度失效機構(gòu)模式有2N-1種,在實際分析中,它們有的可能違反運動學(xué)的約束定理;有的可能違反實際構(gòu)件抗力完全相關(guān)的假設(shè);有的由于機構(gòu)本身可靠度很高,幾乎不能發(fā)生等等,因此,實際考慮的主要機構(gòu)遠遠小于2N-1個。超靜定剛架可靠度的分析, 關(guān)鍵是尋找主要機構(gòu)。

若結(jié)構(gòu)中任一構(gòu)件失效,則整個結(jié)構(gòu)體系失效,具有這種邏輯關(guān)系的結(jié)構(gòu)系統(tǒng)可用串聯(lián)模型表示,所有的靜定結(jié)構(gòu)的失效分析均可采用串聯(lián)模型。若結(jié)構(gòu)中所有單元失效,則該結(jié)構(gòu)體系失效,具有這種邏輯關(guān)系的結(jié)構(gòu)系統(tǒng)可用并聯(lián)模型表示,超靜定結(jié)構(gòu)的失效可用并聯(lián)模型表示。實際的超靜定結(jié)構(gòu)通常有多個破壞模式,每一個破壞模式可簡化為一個并聯(lián)體系,而多個破壞模式又可簡化為串聯(lián)體系,這就構(gòu)成了混聯(lián)模型。因此,我們可以把上述門式剛架結(jié)構(gòu)看成是串-并聯(lián)系統(tǒng)。

2.極限狀態(tài)方程

2.1 靜定結(jié)構(gòu)

在靜定剛架結(jié)構(gòu)體系中,任何一構(gòu)件的失效都將引起體系的失效,因此,其失效概率為各構(gòu)件失效事件和的概率。設(shè)一靜定結(jié)構(gòu)體系,由n個構(gòu)件組成,并分別用E1,E2…En表示各個構(gòu)件的失效事件, 則體系的失效概率為:

(1)

其可靠度表達式為: (2)

靜定結(jié)構(gòu)體系可靠度同組成該體系的各構(gòu)件的可靠度直接相關(guān)。因此,要計算靜定結(jié)構(gòu)體系的可靠度,首先要計算各構(gòu)件的可靠度。設(shè)某構(gòu)件的抗力為Ri,承受的荷載效應(yīng)為Si則該構(gòu)件的功能函數(shù)為 (3)

顯然, 時,該構(gòu)件失效, 就是該構(gòu)件的極限狀態(tài)方程。

2.2超靜定結(jié)構(gòu)

與靜定結(jié)不同,超靜定結(jié)構(gòu)體系中某個或某些構(gòu)件的失效未必引起整個體系的失效。因此,需要考慮各種失效狀況的組合問題。設(shè)結(jié)構(gòu)體系可能形成的機構(gòu)有n種,每種機構(gòu)對應(yīng)的失效事件為Ei,這樣便存在E1,E2…,En種失效事件,而結(jié)構(gòu)體系破壞概率就是各失效事件和的概率。由于超靜定結(jié)構(gòu)體系的可靠度同各種可能機構(gòu)的可靠度有關(guān),因此,要計算超靜定結(jié)構(gòu)體系的可靠度,首先應(yīng)計算各種可能機構(gòu)的可靠度。同靜定結(jié)構(gòu)體系可靠度求解方法一樣,為求超靜定結(jié)構(gòu)體系的可靠度,首先要建立機構(gòu)功能函數(shù)的表達式,以建立求解該機構(gòu)可靠度的極限狀態(tài)方程。為此,對某種可能的機構(gòu),利用虛功原理,建立的一般形式為:

(4)

式中 為第P截面的抗力; 為作用在第i機構(gòu)的第m個荷載; 為第i機構(gòu)與 對應(yīng)的抗力效應(yīng)系數(shù); 為第i機構(gòu)與 對應(yīng)的荷載效應(yīng)系數(shù)。

顯然, 時,該構(gòu)件失效, 就是該構(gòu)件的極限狀態(tài)方程。

對于具有n個可能機構(gòu)的結(jié)構(gòu)體系,其失效概率為:

(5)

3.功能函數(shù)的相關(guān)性

實際上,剛架各構(gòu)件間及作用其上的隨機變量并非孤立的, 而是相互聯(lián)系的。反映這個關(guān)系的是功能函數(shù)的相關(guān)性。設(shè)兩功能函數(shù)Zi和Zj相關(guān),功能函數(shù)中含多個統(tǒng)計獨立的隨機變量R和S,函數(shù)Zi、Zj分別為:

(6)

則其相關(guān)系數(shù)為:

(7)

同一結(jié)構(gòu)系統(tǒng)中兩種失效形式的相關(guān)性可按相關(guān)系數(shù)的大小分為高級相關(guān)與低級相關(guān)。通常定義 為高級相關(guān); 為低級相關(guān)。 為臨界相關(guān)系數(shù),可根據(jù)結(jié)構(gòu)的重要性與經(jīng)濟性修正,一般取 。

當(dāng) 時,可以用一種形式代替另一種失效形式,這樣就可使結(jié)構(gòu)系統(tǒng)的可靠度分析簡化。

當(dāng) 時,必須考慮各種失效形式對結(jié)構(gòu)系統(tǒng)失效的影響。

4.剛架體系失效概率的計算方法

4.1結(jié)構(gòu)體系可靠度的一般界限范圍

在一般情況下,結(jié)構(gòu)體系的失效概率是處在結(jié)構(gòu)體系機構(gòu)間完全相關(guān)與完全獨立之間的,因此,紅華生和阿明主張用這兩種極端情況作為結(jié)構(gòu)體系失效概率的界限范圍即

(8)

如果Pfi很小,有 ,則

(9)

此法可用于估算具有較少控制機構(gòu)下結(jié)構(gòu)體系失效概率 的界限范圍。當(dāng)機構(gòu)數(shù)目多或 非足夠小時,該法算出的界限范圍往往偏大。但由于方法簡單明了,該法常被用于結(jié)構(gòu)體系可靠度的初始檢驗。

4.2結(jié)構(gòu)體系可靠度的窄界限范圍

針對一般界限法中存在的范圍過寬的問題,O.Ditleven于1979年導(dǎo)出了結(jié)構(gòu)體系失效概率的窄界限范圍公式。

設(shè)結(jié)構(gòu)體系的n個機構(gòu)的事件為E1、E2、…、En,根據(jù)概率論,地特里文導(dǎo)得如下的結(jié)構(gòu)體系失效概率界限范圍式:

(10)

式中 為共同事件 的概率,當(dāng)所有隨機變量都是正態(tài)分布且相關(guān)系數(shù) 時,借助于機構(gòu)i、j的可靠指標(biāo) 和 ,由式

(11)

確定,式中:

(12)

(13)

具體計算時,可先求出 代替(11)左邊的 ,再求出 代替(11)右邊的 ,以近似地獲得體系的失效概率 的界限范圍。

4.3 PNET法

PNET法也就是概率網(wǎng)絡(luò)估算技術(shù),PNET法的基本原理是認為所有主要的機構(gòu)可以用其中的m個所謂代表機構(gòu)來代替。這些代表機構(gòu)是由所有主要機構(gòu)通過下述原則選擇出來的,即把主要機構(gòu)分為幾個組, 在同一組中各機構(gòu)與一代表機構(gòu)高級相關(guān),這個代表機構(gòu)就是改組所有機構(gòu)中失效概率最高的機構(gòu)。從相關(guān)條件知,它可以代表改組所有機構(gòu)的失效概率。在計算時,假定不同組間的代表機構(gòu)是統(tǒng)計獨立的,根據(jù)上述原則,設(shè)m個代表機構(gòu)中,第i個機構(gòu)的破壞概率為,則結(jié)構(gòu)體系的可靠度為

(14)

對應(yīng)的失效概率為

(15)

當(dāng)很小時,上式可近似地寫成

(16)

PNET法計算剛架結(jié)構(gòu)體系可靠度的主要步驟如下:

(1)列出主要失效機構(gòu)及相應(yīng)的功能函數(shù) ,然后用一次二階矩法求各可靠指標(biāo) 。把 由小到大進行排列,并將所得序號作為機構(gòu)排列次序的依據(jù)。

(2)選擇定限相關(guān)系數(shù) 值以作為判別各機構(gòu)間的相關(guān)程度的依據(jù)。

(3)尋找m個代表機構(gòu)。取1號機構(gòu)(與最小可靠指標(biāo)對應(yīng))作為第一代表機構(gòu),然后用式(7)計算它與其余機構(gòu)的相關(guān)系數(shù) 。如果 ,則認為第i機構(gòu)與1號機構(gòu)高級相關(guān),因而可為1號機構(gòu)所代替;如果 則認為第i機構(gòu)與1號機構(gòu)低級相關(guān),不能互相代替。再從剩下的機構(gòu)中找出可靠指標(biāo)最小者作為第二個代表機構(gòu),并找出它所代替的機構(gòu)。重復(fù)以上步驟,直到完成最后一個機構(gòu)為止。

(4)最后,用式(14)、(15)計算結(jié)構(gòu)體系的可靠度或失效概率。

4.4蒙特卡羅法

當(dāng)所求結(jié)構(gòu)體系的所有可能機構(gòu)已被識別之后,蒙特卡羅法求其可靠度的步驟如下:

(1)對于結(jié)構(gòu)體系中每一隨機變量的分布,利用隨機數(shù)產(chǎn)生器或隨機數(shù)表產(chǎn)生一隨機數(shù)。用這些隨機數(shù)產(chǎn)生結(jié)構(gòu)體系中的荷載效應(yīng)與抗力值,從而就所有的可能機構(gòu)計算器功能函數(shù) 值。在m個功能函數(shù)中,每次抽樣一般來說都是從第一

個進行到第m個,但當(dāng)出現(xiàn)函數(shù)值小于零時,該次抽樣即可中間停止。那些與負的功能函數(shù)值對應(yīng)的可能失效機構(gòu),即為實際破壞機構(gòu)。

(2)重復(fù)步驟1的計算,設(shè)進行過n次抽樣,并記錄實際失效的樣本數(shù)m。

(3)把實際失效機構(gòu)樣本數(shù)m除以總樣本數(shù)n,即得結(jié)構(gòu)體系的失效概率 。 (17)

(4)為了減少樣本數(shù)不足引起的誤差,蒙特卡羅法的樣本數(shù)n必須大于引起一次 所需要的平均樣本數(shù)的100倍,即

(18)

5.算例

求解如圖a所示門式剛架的可靠度。設(shè)已知各隨機變量及統(tǒng)計量如下:

彎曲抗力M1=(498,74.7)kN。m

彎曲抗力M2=(664,99.5)kN。m

荷 載P1=(454,45.4)kN

荷 載P2=(227,68)kN

L1=4.58m,L2=7.1m,

在同一桿中所有截面的抗力滿足完全相關(guān)的條件下,本剛架可能出現(xiàn)的塑性鉸如圖b所示,一共有7個,由于剛架有3個多余約束,因此,基本機構(gòu)數(shù)為7-3=4。而可能機構(gòu)總數(shù)有24-1=15。通過各方的比較分析之后,得出如圖c所示6種主要失效模式。模式①的塑性鉸為1,4,6,7;模式②的塑性鉸為1,2,6,7;模式③的塑性鉸為1,4,5,7;模式④的塑性鉸為3,4,5;模式⑤的塑性鉸為1,3,5,7;模式⑥的塑性鉸為2,4,6。我們可以把上述剛架結(jié)構(gòu)看成是串-并聯(lián)系統(tǒng),如圖d所示。

在列出的各機構(gòu)的功能函數(shù)、算出對應(yīng)的可靠指標(biāo)和失效概率之后,依可靠指標(biāo)的大小反向排列于表1中

用式(7)算得各機構(gòu)功能函數(shù)間的相關(guān)系數(shù)見表2中

下面就不同的結(jié)構(gòu)體系可靠度計算方法計算本剛架的可靠度

(1)用PNET法求解。取 。由表2選出代表機構(gòu)為1和4。先采用式(15)求得剛架的失效概率為

其次采用式(16)求解,得

結(jié)果說明當(dāng) 較小時,式(15)近似等于式(16)。由于用式(16)計算起來比較方便,因而當(dāng) 較小時,都采用式(16)求解。

(2)用一般界限范圍法求解。由式(9)得界限范圍為

顯然,這個范圍太寬了,難以使用。

(3)用窄界限法求解,用式(10)求得本剛架的窄界限范圍為

(4)用蒙特卡羅法求解。對隨機變量選擇20000的大樣本進行蒙特卡羅法計算,求得802個負的功效函數(shù)值,結(jié)果由式(17)得剛架失效概率 為:

比較以上結(jié)果可以看出:PNET法結(jié)果與蒙特卡羅法結(jié)果相當(dāng)接近;兩個界限范圍值中,一般界限范圍太寬,不實用,窄界限范圍值較窄,一般可以應(yīng)用。

6.結(jié)論

通過對一榀門式剛架進行可靠度分析,分別從結(jié)構(gòu)的失效模式、極限狀態(tài)方程(功能函數(shù))、功能函數(shù)的相關(guān)性、可靠指標(biāo)(失效概率)求法等方面進行了論述。發(fā)現(xiàn)采用結(jié)構(gòu)體系的失效模式來分析結(jié)構(gòu)的可靠度, 更接近于工程實際, 能夠更好的發(fā)揮材料的整體性能。

參考文獻

[1] 劉天云、趙國藩.一種識別結(jié)構(gòu)主要失效模式的有效算法[J].大連理工大學(xué)學(xué)報,1998.

[2] 蔡迎建、孫煥純.結(jié)構(gòu)失效模式的快速識別方法[J].大連理工大學(xué)學(xué)報,1999.

[3] 趙國藩、金偉良、貢金鑫.結(jié)構(gòu)可靠度理論[M].北京:中國建筑工業(yè)出版社,2000.

[4] 吳世偉.結(jié)構(gòu)可靠度分析[M].北京:人民交通出版社,1990.

[5] 許成祥、何培玲.荷載與結(jié)構(gòu)設(shè)計方法[M].北京:北京大學(xué)出版社,2006.

[6] 錢保國、姜晨光.剛架結(jié)構(gòu)體系可靠度的一般算法[J].交通科技,2006.

[7] 黃剛、劉幸.剛架結(jié)構(gòu)體系可靠度分析與優(yōu)化方法[J].武漢大學(xué)學(xué)報,2004.

_____________________

【文章編號】1627-6868(2014)05-0007-05

【作者簡介】郭海龍(1964- ),男,江蘇人,碩士研究生,工程師;主要從事路橋施工、檢測與技術(shù)工作。

式中 為共同事件 的概率,當(dāng)所有隨機變量都是正態(tài)分布且相關(guān)系數(shù) 時,借助于機構(gòu)i、j的可靠指標(biāo) 和 ,由式

(11)

確定,式中:

(12)

(13)

具體計算時,可先求出 代替(11)左邊的 ,再求出 代替(11)右邊的 ,以近似地獲得體系的失效概率 的界限范圍。

4.3 PNET法

PNET法也就是概率網(wǎng)絡(luò)估算技術(shù),PNET法的基本原理是認為所有主要的機構(gòu)可以用其中的m個所謂代表機構(gòu)來代替。這些代表機構(gòu)是由所有主要機構(gòu)通過下述原則選擇出來的,即把主要機構(gòu)分為幾個組, 在同一組中各機構(gòu)與一代表機構(gòu)高級相關(guān),這個代表機構(gòu)就是改組所有機構(gòu)中失效概率最高的機構(gòu)。從相關(guān)條件知,它可以代表改組所有機構(gòu)的失效概率。在計算時,假定不同組間的代表機構(gòu)是統(tǒng)計獨立的,根據(jù)上述原則,設(shè)m個代表機構(gòu)中,第i個機構(gòu)的破壞概率為,則結(jié)構(gòu)體系的可靠度為

(14)

對應(yīng)的失效概率為

(15)

當(dāng)很小時,上式可近似地寫成

(16)

PNET法計算剛架結(jié)構(gòu)體系可靠度的主要步驟如下:

(1)列出主要失效機構(gòu)及相應(yīng)的功能函數(shù) ,然后用一次二階矩法求各可靠指標(biāo) 。把 由小到大進行排列,并將所得序號作為機構(gòu)排列次序的依據(jù)。

(2)選擇定限相關(guān)系數(shù) 值以作為判別各機構(gòu)間的相關(guān)程度的依據(jù)。

(3)尋找m個代表機構(gòu)。取1號機構(gòu)(與最小可靠指標(biāo)對應(yīng))作為第一代表機構(gòu),然后用式(7)計算它與其余機構(gòu)的相關(guān)系數(shù) 。如果 ,則認為第i機構(gòu)與1號機構(gòu)高級相關(guān),因而可為1號機構(gòu)所代替;如果 則認為第i機構(gòu)與1號機構(gòu)低級相關(guān),不能互相代替。再從剩下的機構(gòu)中找出可靠指標(biāo)最小者作為第二個代表機構(gòu),并找出它所代替的機構(gòu)。重復(fù)以上步驟,直到完成最后一個機構(gòu)為止。

(4)最后,用式(14)、(15)計算結(jié)構(gòu)體系的可靠度或失效概率。

4.4蒙特卡羅法

當(dāng)所求結(jié)構(gòu)體系的所有可能機構(gòu)已被識別之后,蒙特卡羅法求其可靠度的步驟如下:

(1)對于結(jié)構(gòu)體系中每一隨機變量的分布,利用隨機數(shù)產(chǎn)生器或隨機數(shù)表產(chǎn)生一隨機數(shù)。用這些隨機數(shù)產(chǎn)生結(jié)構(gòu)體系中的荷載效應(yīng)與抗力值,從而就所有的可能機構(gòu)計算器功能函數(shù) 值。在m個功能函數(shù)中,每次抽樣一般來說都是從第一

個進行到第m個,但當(dāng)出現(xiàn)函數(shù)值小于零時,該次抽樣即可中間停止。那些與負的功能函數(shù)值對應(yīng)的可能失效機構(gòu),即為實際破壞機構(gòu)。

(2)重復(fù)步驟1的計算,設(shè)進行過n次抽樣,并記錄實際失效的樣本數(shù)m。

(3)把實際失效機構(gòu)樣本數(shù)m除以總樣本數(shù)n,即得結(jié)構(gòu)體系的失效概率 。 (17)

(4)為了減少樣本數(shù)不足引起的誤差,蒙特卡羅法的樣本數(shù)n必須大于引起一次 所需要的平均樣本數(shù)的100倍,即

(18)

5.算例

求解如圖a所示門式剛架的可靠度。設(shè)已知各隨機變量及統(tǒng)計量如下:

彎曲抗力M1=(498,74.7)kN。m

彎曲抗力M2=(664,99.5)kN。m

荷 載P1=(454,45.4)kN

荷 載P2=(227,68)kN

L1=4.58m,L2=7.1m,

在同一桿中所有截面的抗力滿足完全相關(guān)的條件下,本剛架可能出現(xiàn)的塑性鉸如圖b所示,一共有7個,由于剛架有3個多余約束,因此,基本機構(gòu)數(shù)為7-3=4。而可能機構(gòu)總數(shù)有24-1=15。通過各方的比較分析之后,得出如圖c所示6種主要失效模式。模式①的塑性鉸為1,4,6,7;模式②的塑性鉸為1,2,6,7;模式③的塑性鉸為1,4,5,7;模式④的塑性鉸為3,4,5;模式⑤的塑性鉸為1,3,5,7;模式⑥的塑性鉸為2,4,6。我們可以把上述剛架結(jié)構(gòu)看成是串-并聯(lián)系統(tǒng),如圖d所示。

在列出的各機構(gòu)的功能函數(shù)、算出對應(yīng)的可靠指標(biāo)和失效概率之后,依可靠指標(biāo)的大小反向排列于表1中

用式(7)算得各機構(gòu)功能函數(shù)間的相關(guān)系數(shù)見表2中

下面就不同的結(jié)構(gòu)體系可靠度計算方法計算本剛架的可靠度

(1)用PNET法求解。取 。由表2選出代表機構(gòu)為1和4。先采用式(15)求得剛架的失效概率為

其次采用式(16)求解,得

結(jié)果說明當(dāng) 較小時,式(15)近似等于式(16)。由于用式(16)計算起來比較方便,因而當(dāng) 較小時,都采用式(16)求解。

(2)用一般界限范圍法求解。由式(9)得界限范圍為

顯然,這個范圍太寬了,難以使用。

(3)用窄界限法求解,用式(10)求得本剛架的窄界限范圍為

(4)用蒙特卡羅法求解。對隨機變量選擇20000的大樣本進行蒙特卡羅法計算,求得802個負的功效函數(shù)值,結(jié)果由式(17)得剛架失效概率 為:

比較以上結(jié)果可以看出:PNET法結(jié)果與蒙特卡羅法結(jié)果相當(dāng)接近;兩個界限范圍值中,一般界限范圍太寬,不實用,窄界限范圍值較窄,一般可以應(yīng)用。

6.結(jié)論

通過對一榀門式剛架進行可靠度分析,分別從結(jié)構(gòu)的失效模式、極限狀態(tài)方程(功能函數(shù))、功能函數(shù)的相關(guān)性、可靠指標(biāo)(失效概率)求法等方面進行了論述。發(fā)現(xiàn)采用結(jié)構(gòu)體系的失效模式來分析結(jié)構(gòu)的可靠度, 更接近于工程實際, 能夠更好的發(fā)揮材料的整體性能。

參考文獻

[1] 劉天云、趙國藩.一種識別結(jié)構(gòu)主要失效模式的有效算法[J].大連理工大學(xué)學(xué)報,1998.

[2] 蔡迎建、孫煥純.結(jié)構(gòu)失效模式的快速識別方法[J].大連理工大學(xué)學(xué)報,1999.

[3] 趙國藩、金偉良、貢金鑫.結(jié)構(gòu)可靠度理論[M].北京:中國建筑工業(yè)出版社,2000.

[4] 吳世偉.結(jié)構(gòu)可靠度分析[M].北京:人民交通出版社,1990.

[5] 許成祥、何培玲.荷載與結(jié)構(gòu)設(shè)計方法[M].北京:北京大學(xué)出版社,2006.

[6] 錢保國、姜晨光.剛架結(jié)構(gòu)體系可靠度的一般算法[J].交通科技,2006.

[7] 黃剛、劉幸.剛架結(jié)構(gòu)體系可靠度分析與優(yōu)化方法[J].武漢大學(xué)學(xué)報,2004.

_____________________

【文章編號】1627-6868(2014)05-0007-05

【作者簡介】郭海龍(1964- ),男,江蘇人,碩士研究生,工程師;主要從事路橋施工、檢測與技術(shù)工作。

式中 為共同事件 的概率,當(dāng)所有隨機變量都是正態(tài)分布且相關(guān)系數(shù) 時,借助于機構(gòu)i、j的可靠指標(biāo) 和 ,由式

(11)

確定,式中:

(12)

(13)

具體計算時,可先求出 代替(11)左邊的 ,再求出 代替(11)右邊的 ,以近似地獲得體系的失效概率 的界限范圍。

4.3 PNET法

PNET法也就是概率網(wǎng)絡(luò)估算技術(shù),PNET法的基本原理是認為所有主要的機構(gòu)可以用其中的m個所謂代表機構(gòu)來代替。這些代表機構(gòu)是由所有主要機構(gòu)通過下述原則選擇出來的,即把主要機構(gòu)分為幾個組, 在同一組中各機構(gòu)與一代表機構(gòu)高級相關(guān),這個代表機構(gòu)就是改組所有機構(gòu)中失效概率最高的機構(gòu)。從相關(guān)條件知,它可以代表改組所有機構(gòu)的失效概率。在計算時,假定不同組間的代表機構(gòu)是統(tǒng)計獨立的,根據(jù)上述原則,設(shè)m個代表機構(gòu)中,第i個機構(gòu)的破壞概率為,則結(jié)構(gòu)體系的可靠度為

(14)

對應(yīng)的失效概率為

(15)

當(dāng)很小時,上式可近似地寫成

(16)

PNET法計算剛架結(jié)構(gòu)體系可靠度的主要步驟如下:

(1)列出主要失效機構(gòu)及相應(yīng)的功能函數(shù) ,然后用一次二階矩法求各可靠指標(biāo) 。把 由小到大進行排列,并將所得序號作為機構(gòu)排列次序的依據(jù)。

(2)選擇定限相關(guān)系數(shù) 值以作為判別各機構(gòu)間的相關(guān)程度的依據(jù)。

(3)尋找m個代表機構(gòu)。取1號機構(gòu)(與最小可靠指標(biāo)對應(yīng))作為第一代表機構(gòu),然后用式(7)計算它與其余機構(gòu)的相關(guān)系數(shù) 。如果 ,則認為第i機構(gòu)與1號機構(gòu)高級相關(guān),因而可為1號機構(gòu)所代替;如果 則認為第i機構(gòu)與1號機構(gòu)低級相關(guān),不能互相代替。再從剩下的機構(gòu)中找出可靠指標(biāo)最小者作為第二個代表機構(gòu),并找出它所代替的機構(gòu)。重復(fù)以上步驟,直到完成最后一個機構(gòu)為止。

(4)最后,用式(14)、(15)計算結(jié)構(gòu)體系的可靠度或失效概率。

4.4蒙特卡羅法

當(dāng)所求結(jié)構(gòu)體系的所有可能機構(gòu)已被識別之后,蒙特卡羅法求其可靠度的步驟如下:

(1)對于結(jié)構(gòu)體系中每一隨機變量的分布,利用隨機數(shù)產(chǎn)生器或隨機數(shù)表產(chǎn)生一隨機數(shù)。用這些隨機數(shù)產(chǎn)生結(jié)構(gòu)體系中的荷載效應(yīng)與抗力值,從而就所有的可能機構(gòu)計算器功能函數(shù) 值。在m個功能函數(shù)中,每次抽樣一般來說都是從第一

個進行到第m個,但當(dāng)出現(xiàn)函數(shù)值小于零時,該次抽樣即可中間停止。那些與負的功能函數(shù)值對應(yīng)的可能失效機構(gòu),即為實際破壞機構(gòu)。

(2)重復(fù)步驟1的計算,設(shè)進行過n次抽樣,并記錄實際失效的樣本數(shù)m。

(3)把實際失效機構(gòu)樣本數(shù)m除以總樣本數(shù)n,即得結(jié)構(gòu)體系的失效概率 。 (17)

(4)為了減少樣本數(shù)不足引起的誤差,蒙特卡羅法的樣本數(shù)n必須大于引起一次 所需要的平均樣本數(shù)的100倍,即

(18)

5.算例

求解如圖a所示門式剛架的可靠度。設(shè)已知各隨機變量及統(tǒng)計量如下:

彎曲抗力M1=(498,74.7)kN。m

彎曲抗力M2=(664,99.5)kN。m

荷 載P1=(454,45.4)kN

荷 載P2=(227,68)kN

L1=4.58m,L2=7.1m,

在同一桿中所有截面的抗力滿足完全相關(guān)的條件下,本剛架可能出現(xiàn)的塑性鉸如圖b所示,一共有7個,由于剛架有3個多余約束,因此,基本機構(gòu)數(shù)為7-3=4。而可能機構(gòu)總數(shù)有24-1=15。通過各方的比較分析之后,得出如圖c所示6種主要失效模式。模式①的塑性鉸為1,4,6,7;模式②的塑性鉸為1,2,6,7;模式③的塑性鉸為1,4,5,7;模式④的塑性鉸為3,4,5;模式⑤的塑性鉸為1,3,5,7;模式⑥的塑性鉸為2,4,6。我們可以把上述剛架結(jié)構(gòu)看成是串-并聯(lián)系統(tǒng),如圖d所示。

在列出的各機構(gòu)的功能函數(shù)、算出對應(yīng)的可靠指標(biāo)和失效概率之后,依可靠指標(biāo)的大小反向排列于表1中

用式(7)算得各機構(gòu)功能函數(shù)間的相關(guān)系數(shù)見表2中

下面就不同的結(jié)構(gòu)體系可靠度計算方法計算本剛架的可靠度

(1)用PNET法求解。取 。由表2選出代表機構(gòu)為1和4。先采用式(15)求得剛架的失效概率為

其次采用式(16)求解,得

結(jié)果說明當(dāng) 較小時,式(15)近似等于式(16)。由于用式(16)計算起來比較方便,因而當(dāng) 較小時,都采用式(16)求解。

(2)用一般界限范圍法求解。由式(9)得界限范圍為

顯然,這個范圍太寬了,難以使用。

(3)用窄界限法求解,用式(10)求得本剛架的窄界限范圍為

(4)用蒙特卡羅法求解。對隨機變量選擇20000的大樣本進行蒙特卡羅法計算,求得802個負的功效函數(shù)值,結(jié)果由式(17)得剛架失效概率 為:

比較以上結(jié)果可以看出:PNET法結(jié)果與蒙特卡羅法結(jié)果相當(dāng)接近;兩個界限范圍值中,一般界限范圍太寬,不實用,窄界限范圍值較窄,一般可以應(yīng)用。

6.結(jié)論

通過對一榀門式剛架進行可靠度分析,分別從結(jié)構(gòu)的失效模式、極限狀態(tài)方程(功能函數(shù))、功能函數(shù)的相關(guān)性、可靠指標(biāo)(失效概率)求法等方面進行了論述。發(fā)現(xiàn)采用結(jié)構(gòu)體系的失效模式來分析結(jié)構(gòu)的可靠度, 更接近于工程實際, 能夠更好的發(fā)揮材料的整體性能。

參考文獻

[1] 劉天云、趙國藩.一種識別結(jié)構(gòu)主要失效模式的有效算法[J].大連理工大學(xué)學(xué)報,1998.

[2] 蔡迎建、孫煥純.結(jié)構(gòu)失效模式的快速識別方法[J].大連理工大學(xué)學(xué)報,1999.

[3] 趙國藩、金偉良、貢金鑫.結(jié)構(gòu)可靠度理論[M].北京:中國建筑工業(yè)出版社,2000.

[4] 吳世偉.結(jié)構(gòu)可靠度分析[M].北京:人民交通出版社,1990.

[5] 許成祥、何培玲.荷載與結(jié)構(gòu)設(shè)計方法[M].北京:北京大學(xué)出版社,2006.

[6] 錢保國、姜晨光.剛架結(jié)構(gòu)體系可靠度的一般算法[J].交通科技,2006.

[7] 黃剛、劉幸.剛架結(jié)構(gòu)體系可靠度分析與優(yōu)化方法[J].武漢大學(xué)學(xué)報,2004.

_____________________

【文章編號】1627-6868(2014)05-0007-05

【作者簡介】郭海龍(1964- ),男,江蘇人,碩士研究生,工程師;主要從事路橋施工、檢測與技術(shù)工作。

猜你喜歡
體系結(jié)構(gòu)
《形而上學(xué)》△卷的結(jié)構(gòu)和位置
構(gòu)建體系,舉一反三
論結(jié)構(gòu)
中華詩詞(2019年7期)2019-11-25 01:43:04
探索自由貿(mào)易賬戶體系創(chuàng)新應(yīng)用
中國外匯(2019年17期)2019-11-16 09:31:14
新型平衡塊結(jié)構(gòu)的應(yīng)用
模具制造(2019年3期)2019-06-06 02:10:54
論《日出》的結(jié)構(gòu)
創(chuàng)新治理結(jié)構(gòu)促進中小企業(yè)持續(xù)成長
如何建立長期有效的培訓(xùn)體系
“曲線運動”知識體系和方法指導(dǎo)
基于BIM的結(jié)構(gòu)出圖
主站蜘蛛池模板: 国产成人精品一区二区不卡| 欧美日韩亚洲国产| 国产在线一区二区视频| 亚洲视频黄| 伊人久久福利中文字幕| 亚洲一欧洲中文字幕在线| 中文字幕 欧美日韩| 欧美午夜理伦三级在线观看| 亚洲精品第一页不卡| 免费毛片网站在线观看| 亚洲AV免费一区二区三区| 久久久精品久久久久三级| 一本大道视频精品人妻 | 国产精品蜜芽在线观看| 久久免费视频播放| 国产高清精品在线91| 国产91精品最新在线播放| 麻豆国产精品视频| 人妻丰满熟妇αv无码| 天天躁夜夜躁狠狠躁躁88| 中文字幕免费播放| 一级毛片视频免费| 国产a v无码专区亚洲av| 亚洲高清中文字幕在线看不卡| 国产不卡国语在线| 国产国模一区二区三区四区| 91综合色区亚洲熟妇p| 91精品啪在线观看国产91九色| 男人天堂亚洲天堂| 青青热久免费精品视频6| 小说 亚洲 无码 精品| 国产精品香蕉| 九九热免费在线视频| 亚洲专区一区二区在线观看| 日本三级欧美三级| 亚洲综合香蕉| 欧美69视频在线| аⅴ资源中文在线天堂| 女人18毛片一级毛片在线 | 国产久操视频| 四虎在线观看视频高清无码| 国产成人久视频免费| 免费观看男人免费桶女人视频| 色婷婷电影网| 一级黄色片网| 亚洲精品成人福利在线电影| 日韩精品成人网页视频在线| 成人久久精品一区二区三区| 国产小视频a在线观看| 日韩精品免费在线视频| 日本国产在线| 国产午夜福利在线小视频| 久久99久久无码毛片一区二区| 久久中文字幕2021精品| 91伊人国产| 日韩无码视频播放| 97se亚洲综合| 99热这里只有精品免费国产| 爽爽影院十八禁在线观看| 国产毛片久久国产| 69免费在线视频| 欧美不卡在线视频| 亚洲国产精品无码AV| 国产屁屁影院| 久久精品欧美一区二区| 欧美国产另类| 午夜免费小视频| 久久婷婷国产综合尤物精品| 无遮挡国产高潮视频免费观看| 老色鬼欧美精品| 无码精品国产VA在线观看DVD | h视频在线观看网站| 国产高清又黄又嫩的免费视频网站| 亚洲人成网址| 亚洲Va中文字幕久久一区| 久久永久视频| 精品人妻AV区| 久久久久青草大香线综合精品| 亚洲日韩精品无码专区97| 成人免费网站在线观看| 日本尹人综合香蕉在线观看| 91精品在线视频观看|