孫阿龍等
摘要設計了一種兩極隔離式雙極電極電化學發光裝置,并以此裝置為基礎,研究了電化學發光試劑魯米諾在此裝置中的電化學發光行為和分析特性。通過外加電場的誘導,可以在雙極電極的兩極富集、分離對應的陰、陽離子,使魯米諾陰離子富集于雙極電極的陽極端,待檢測的陽離子富集于雙極電極陰極端。根據魯米諾在陽極端的電化學發光信號定量分析陰極端所富集的陽離子的總量。\[15、16\]。其中非空間隔離式結構的雙極電極的理論研究和應用特別廣泛\[15\]。 Crooks等將非隔離式雙極電極與微流控技術結合,研究人員發展了雙極電極電化學發光化學\[8~14\]、生物傳感\[17\],分析物分離富集\[18~24\]等方法,極大拓寬了雙極電極的理論研究和分析應用范圍\[15\]。
Zhang等系統研究了兩極空間隔離式雙極電極的電化學理論和分析特性\[16,25\],成功研制了兩極隔離式雙極納米、微米電極\[16\],研究了此類雙極電極的電化學傳感和超微空間傳感特性,極大拓展了兩極隔離式雙極電極的發展空間和應用范圍。但是有關兩極隔離式雙極電極的電化學發光特性尚未見文獻報道。
本研究設計了一種兩極隔離式雙極電極電化學發光裝置,并以此裝置為基礎,研究了兩極隔離式雙極電極在魯米諾電化學發光體系中電化學發光行為和分析特性。本方法具有如下的優點:(1)與微流控雙極電極電化學發光裝置相比,本裝置具有設計簡單、便宜、易于加工的特點;(2)雙極電極的陽極端和陰極端被分隔在不同的電解室,分析物的富集、分離介質和電化學發光傳感反應的介質可以完全依據各自反應的要求、方便選擇,彼此沒有干擾,為優化體系的分析特性和拓寬應用范圍奠定了基礎;(3)在此體系中,兩極分處不同空間,彼此隔開。因此,發生在經典微流控雙電極體系中的電滲流等液體流動對雙極端的“擾動效應”等可降低或消除,增強了體系分析信號的穩定性和重現性。
2實驗部分
2.1儀器與試劑
MPIA型電泳電化學發光檢測儀(西安瑞邁公司);兩根鉑絲(驅動電極);自制隔離式雙極電極,1.5 mL離心管(驅動電極的電解池);內徑0.5 mm的聚四氟乙烯管;25×25 稱量瓶(發光池); DDS11A型數字電導率儀(上海雷磁創益儀器儀表有限公司)。
魯米諾(美國Sigma公司);NaH2PO4Na2HPO4緩沖液(PBS, pH 7.4)。實驗所用試劑均為分析純。實驗用水為超純水。
2.2兩極隔離式雙極電極的制備
截取長約4 cm玻璃管,將長1 cm、直徑0.5 mm的鉑絲裝進玻璃管(一半在玻璃管內部,一半在玻璃管外部),將其放置在酒精噴燈上灼燒,直至玻璃管與鉑絲完全密封。
2.3測量方法
3結果與討論
3.1隔離式雙極電極電化學發光裝置的設計
隔離式雙極電極電化學發光裝置的設計如圖1所示。在陽極池和連接管a中注入分析物溶液,在陰極池、連接管b和發光池中裝入魯米諾溶液,將兩極隔離式雙極電極垂直插入發光池中。當有一定的驅動電壓施加于驅動電極兩端時,在雙極電極附近將會產生一個電勢梯度,這個電勢梯度會導致陰、陽離子在雙極電極的兩極富集\[26\]。同時,當施加的驅動電壓足夠大時,還會誘導雙極電極表面的法拉第電化學過程。富集于雙極電極陽極端的魯米諾就會產生電化學發光信號,從而傳感陰極端富集的陽離子。基于此裝置的電化學發光信號可定量分析檢測水中雜質離子的總量。
3.2雙極電極陽極端氧化魯米諾的電化學發光特性研究
為驗證上述裝置的預設功能,以魯米諾為電化學發光傳感試劑, 以低濃度且組成較為復雜的PBS緩沖溶液為分析物。當向驅動電極施加足夠高的脈沖式電壓激發信號時,插入發光池中的雙極電極陽極端將產生強烈的發光信號,且當脈沖電壓信號的施加時間為3 s、檢測電化學發光信號的時間為40 s時,可產生良好的峰型電化學發光信號,其發光動力學曲線如圖2所示。更為重要的是,當連續脈沖信號施加時,相應的電化學發光信號會持續增強,而當分析物中不含電解質溶液時,體系所產生電化學發光信號弱,且增強緩慢。因此,這一電化學發光信號可用于定量分析溶液中電解質的總量。
為了使魯米諾的電化學發光信號具有較好的重現性和穩定性,研究了各種實驗條件(如電極在電解池和發光池中的位置等)對魯米諾電化學發光行為的影響。結果表明,當陰極池和陽極池中鉑電極的位置、連接管在陰極池和陽極池中位置、雙極電極的位置等均需保持穩定不變時,魯米諾的電化學發光信號具有良好的重現性(圖3),相對標準偏差為1.6%。
3.5發光池中支持電解質對雙極電極體系中魯米諾的ECL的影響
在本研究中,雙極電極陽極端的電化學發光強度與其富集的魯米諾有關,當發光池中有其它電解質存在時,必然導致富集的魯米諾減少,從而使雙極電極陽極端電化學發光強度降低。在發光池中加入支持電解質KCl溶液,魯米諾的電化學發光強度
隨KCl溶液濃度增加而降低,這可能是由于隨著Cl
Symbolm@@ 的加入,雙極電極陽極端富集的陰離子將產生競爭效應,使富集的魯米諾陰離子減少,電化學發光強度降低。
3.6電化學發光分析特性
在最佳實驗條件下,研究了魯米諾電化學發光信號與水溶液中雜質離子濃度(以PBS溶液為代表)的關系(圖5)。
3.7兩極隔離式雙極電極上魯米諾電化學發光體系可能的發光機理
當施加脈沖電壓時,兩極隔離式雙極電極通過溶液使整個回路暢通,此時,[TS(]圖6電化學發光傳感電導原理
此外,雙極電極的陰、陽兩極富集的陽陰離子需保持電荷平衡狀態\[28\],樣品中陽離子濃度越大,陽極富集的魯米諾越多,發生氧化的魯米諾就越多,產生的電化學發光信號越強;因此,體系中魯米諾的ECL強度與雙極電極陰極端富集的陽離子總量有關,因此,可根據發光信號定量分析溶液中的陽離子總量。
4結論
設計的兩極隔離式雙極電極電化學發光裝置可廣泛應用于分離富集領域;與已知的非隔離式雙極電極電化學發光裝置相比,此裝置具有將分離、富集與電化學傳感集于一體的特點,拓寬了電化學發光檢測法的應用范圍。
References
1Ghoroghchian J, Pons S, Fleischmann M J. Electroanal. Chem., 1991, 317(12): 101-108
2Bradley J C, Chen H M, Crawford J, Eckert J, Ernazarova K, Kurzeja T, Lin M D, McGee M, Nadler W, Stephens S G. Nature, 1997, 389(6648): 268-271
3Wang Y, Hernandez R M, Bartlett D J, Bingham J M, Kline T R, Sen A, Mallouk T E. Langmuir, 2006, 22(25): 10451-10456
4Ulrich C, Andersson O, Nyholm L, Bjoerefors F. Angew. Chem. Int. Ed, 2008, 47(16): 3034-3036
5Warakulwit C, Nguyen T, Majimel J, Delville M H, Lapeyre V, Garrigue P, Ravaine V, Limtrakul J, Kuhn A. Nano Lett., 2008, 8(2): 500-504
6Ulrich C, Andersson O, Nyholm , Bjoerefors F. Anal. Chem., 2009, 81(1): 453-459
7Ishiguro Y, Inagi S, Fuchigami T. Langmuir, 2011, 27(11): 7158-7162
8Arora A, Eijkel J C T, Morf W E, Manz A. Anal. Chem., 2001, 73(14): 3282-3288
9Zhan W, Alvarez J, Crooks R M. J. Am. Chem. Soc., 2002, 124(44): 13265-13270
10Chow K F, Mavre F, Crooks R M. J. Am. Chem. Soc., 2008, 130(24): 7544-7545
11Wu M S, Qian G S, Xu J J, Chen H Y. Anal. Chem., 2012, 84(12): 5407-5414
12Chow K F, Chang B Y, Zaccheo B A, Mavre F, Crooks R M. J. Am. Chem. Soc., 2010, 132(27): 9228-9229
13Wu M S, Xu B Y, Shi H W, Xu J J, Chen H Y. Lab Chip, 2011, 11(16): 2720-2724
14Chang B Y, Chow K F, Crooks J A, Mavre F, Crooks R M. Analyst, 2012, 137(12): 2827-2833
15Mavre F, Anand R K, Laws D R, Chow K F, Chang B Y, Crooks J A, Crooks R M. Anal. Chem., 2010, 82(21): 8766-8774
16Guerrette J P, Oja S M, Zhang B. Anal. Chem., 2012, 84(3): 1609-1616
17Adams K L, Puchades M, Ewing A G. Annu. Rev. Anal. Chem., 2008, 1: 329-355
18Hlushkou D, Perdue R K, Dhopeshwarkar R, Crooks R M, Tallarek U. Lab Chip, 2009, 9(13): 1903-1913
19Laws D R, Hlushkou D, Perdue R K, Tallarek U, Crooks R M. Anal. Chem., 2009, 81(21): 8923-8929
20Perdue R K, Laws D R, Hlushkou D, Tallarek U, Crooks R M. Anal. Chem., 2009, 81(24): 10149-10155
21Anand R K, Sheridan E, Hlushkou D, Tallarek U, Crooks R M. Lab Chip, 2011, 11(3): 518-527
22Anand R K, Sheridan E, Knust K N, Crooks R M. Anal. Chem., 2011, 83(6): 2351-2358
23Sheridan E, Hlushkou D, Anand R K, Laws D R, Tallarek U, Crooks R M. Anal. Chem., 2011, 83(6): 6746-6753
24Sheridan E, Knust K N, Crooks R M. Analyst, 2011, 136(20): 4134-4137
25Cox J T, Guerrette J P, Zhang B. Anal. Chem., 2012, 84(20): 8797-8804
26Dhopeshwarkar R, Hlushkou D, Nguyen M, Tallarek U, Crooks R M. J. Am. Chem. Soc., 2008, 130(32): 10480-10481
27GUO ZiCheng. The Second Volume of Physical Chemistry. Beijing: Chemical Industry Press, 2013: 7-11
郭子成. 物理化學(下冊), 北京: 化學工業出版社, 2013: 7-11
28Mavre F, Chow K F, Sheridan E, Chang B Y, Crooks J A, Crooks R M. Anal. Chem., 2009, 81(15): 6218-6225
AbstractA new closed bipolar electrode electrochemiluminescence (ECL)based device was designed, and further used to investigate the ECL behaviors of luminol in this device. Our results showed that, while a suitable voltage was applied to the two poles of the closed bipolar electrode, both the positively charged ions and luminolbased anionic ions could be enriched on the two poles of the closed bipolar electrode, respectively. More importantly, the ECL signals, generated from the electrooxidation of luminol on anodic pole, were found to be related to the total amount of positively charged ions on the cathodic pole of the closed bipolar electrode. Under the optimum experimental conditions, the ECL response was linearly to the concentration of analyte in the range of 1.0×10
Based on this finding, a new ECL method for sensing the solution conductance was developed.
KeywordsElectrochemiluminescnce; Closed bipolar electrode; Luminol; Solution conductance
25Cox J T, Guerrette J P, Zhang B. Anal. Chem., 2012, 84(20): 8797-8804
26Dhopeshwarkar R, Hlushkou D, Nguyen M, Tallarek U, Crooks R M. J. Am. Chem. Soc., 2008, 130(32): 10480-10481
27GUO ZiCheng. The Second Volume of Physical Chemistry. Beijing: Chemical Industry Press, 2013: 7-11
郭子成. 物理化學(下冊), 北京: 化學工業出版社, 2013: 7-11
28Mavre F, Chow K F, Sheridan E, Chang B Y, Crooks J A, Crooks R M. Anal. Chem., 2009, 81(15): 6218-6225
AbstractA new closed bipolar electrode electrochemiluminescence (ECL)based device was designed, and further used to investigate the ECL behaviors of luminol in this device. Our results showed that, while a suitable voltage was applied to the two poles of the closed bipolar electrode, both the positively charged ions and luminolbased anionic ions could be enriched on the two poles of the closed bipolar electrode, respectively. More importantly, the ECL signals, generated from the electrooxidation of luminol on anodic pole, were found to be related to the total amount of positively charged ions on the cathodic pole of the closed bipolar electrode. Under the optimum experimental conditions, the ECL response was linearly to the concentration of analyte in the range of 1.0×10
Based on this finding, a new ECL method for sensing the solution conductance was developed.
KeywordsElectrochemiluminescnce; Closed bipolar electrode; Luminol; Solution conductance
25Cox J T, Guerrette J P, Zhang B. Anal. Chem., 2012, 84(20): 8797-8804
26Dhopeshwarkar R, Hlushkou D, Nguyen M, Tallarek U, Crooks R M. J. Am. Chem. Soc., 2008, 130(32): 10480-10481
27GUO ZiCheng. The Second Volume of Physical Chemistry. Beijing: Chemical Industry Press, 2013: 7-11
郭子成. 物理化學(下冊), 北京: 化學工業出版社, 2013: 7-11
28Mavre F, Chow K F, Sheridan E, Chang B Y, Crooks J A, Crooks R M. Anal. Chem., 2009, 81(15): 6218-6225
AbstractA new closed bipolar electrode electrochemiluminescence (ECL)based device was designed, and further used to investigate the ECL behaviors of luminol in this device. Our results showed that, while a suitable voltage was applied to the two poles of the closed bipolar electrode, both the positively charged ions and luminolbased anionic ions could be enriched on the two poles of the closed bipolar electrode, respectively. More importantly, the ECL signals, generated from the electrooxidation of luminol on anodic pole, were found to be related to the total amount of positively charged ions on the cathodic pole of the closed bipolar electrode. Under the optimum experimental conditions, the ECL response was linearly to the concentration of analyte in the range of 1.0×10
Based on this finding, a new ECL method for sensing the solution conductance was developed.
KeywordsElectrochemiluminescnce; Closed bipolar electrode; Luminol; Solution conductance