王祥夫
摘 要:通過先沉淀后退火法合成了Al2O3:Er3+熒光粉,研究了980nm激光激發下Al2O3:Er3+熒光粉的光致發光性質。為了增強Al2O3:Er3+熒光粉的熒光強度,Ba2+,Ca2+,Sr2+,Mg2+四種離子被摻雜進入了這種熒光粉中。結果了發現,摻雜后的Al2O3:Er3+熒光粉的熒光強度大幅度增加。
關鍵詞:Al2O3:Er3+ 摻雜 熒光
中圖分類號:O765 文獻標識碼:A 文章編號:1674-098X(2014)08(b)-0218-01
在眾多的稀土離子中,Er3+離子是能級最豐富的稀土離子,能夠匹配從紫外光到近紅外光的寬頻段的吸收和發射。近來,Er3+離子摻雜的發光材料被不斷地合成和在不同的領域廣泛研究。其中,Er3+離子摻雜的上轉換材料被廣泛關注,目的是設法提高這些材料的發光強度和發光顏色的可調節性。目前,大多數Er3+離子摻雜的上轉換材料的發光效率很低,即使被認為上轉換效率很高的Er/Yb:NaYF4的熒光效率大約為3%[1],如何大幅度提高上轉換熒光材料的效率就成了一個廣泛關注的研究課題。在本文中,Er3+離子摻雜的Al2O3熒光粉被通過先沉淀后退火法合成,被選擇作為實驗材料。我們提出了通過摻雜不同的堿土金屬離子來進行改變Er3+離子在Al2O3基質環境中的對稱性,從而改變Er3+離子摻雜的Al2O3熒光粉的發光效率的想法。
1 實驗部分
稱量Al(NO3)3·9H2O 2.0151 g溶于25 mL熱水中,并進行不斷的攪拌。然后,加入ErCl3溶液0.5 mL,選擇加入Ba(NO3)2,Ca(NO3)2,Sr(NO3)2, Mg(NO3)2溶液中的一種。稱量NH4F 1.3077 g溶于10 mL水中,然后滴加到混合液中,用氨水調節PH。800度退火2 h,研磨待測試。用Omni-λ3007 型穩態熒光光譜儀測量粉體的熒光光譜。
2 結果和討論
在980nm激發下,Ba2+,Ca2+,Sr2+, Mg2+四種離子摻雜的Al2O3:Er3+熒光材料的光致發光譜被測量,結果如圖1所示。對于Al2O3:Er3+熒光材料,在980 nm激發下,發射出弱的411 nm,455 nm, 547 nm,658 nm,807 nm的熒光峰,這些發射峰來源于2H9/2→4I15/2,4F5/2→4I15/2,4S3/2→4I15/2,4F9/2→4I15/2,4I9/2→4I15/2躍遷。摻雜Ba2+離子后,出現了一系列的光譜性質的變化:①熒光強度比發生了變化,摻雜前547 nm綠光的發射強度小于紅光,摻雜后綠光的發射強度大于紅光;②摻雜導致了每個發射峰的熒光強度增強。其中,增強最大的是547 nm綠光的發射比摻雜前提高了37倍,658 nm紅光也提高了3.5倍左右。而且摻雜前后光譜的形狀也發生了變化,出現了一些不明顯的劈裂結構。摻雜Ca2+離子后,出現了一系列的光譜性質的變化:①熒光強度比變化不大;②摻雜導致了每個發射峰的熒光強度增強,使411 nm的藍光發射變的明顯。其中,增強最大的是658 nm紅光的發射比摻雜前提高了16倍,綠光也提高了10.3倍左右。而且摻雜前后光譜的形狀也發生了變化,出現了一些明顯的劈裂結構。摻雜Sr2+離子后,出現了一系列的光譜性質的變化:①熒光強度比發生了變化,摻雜前547nm綠光的發射強度小于紅光,摻雜后綠光的發射強度幾乎與紅光的發射強度相當;②摻雜導致了每個發射峰的熒光強度增強。其中,增強最大的是547 nm綠光的發射,比摻雜前提高了8倍,658 nm紅光也提高了2倍左右。而且摻雜前后光譜的形狀也發生了變化,出現了一些不明顯的劈裂結構。摻雜Mg2+離子后,出現了一系列的光譜性質的變化:①熒光強度比發生了小的變化;②摻雜導致了每個發射峰的熒光強度增強。其中,547 nm綠光的發射比摻雜前提高了1.25倍,658 nm紅光也提高了1.27倍左右。而且摻雜前后光譜的形狀也發生了變化,出現了一些不明顯的劈裂結構。
以上變化可能來源于兩個原因:1.Al3+的半徑比較小,摻雜半徑大的Er3+后,Er3+作為填隙離子出現在Al2O3晶格中,摻雜堿土金屬離子后導致了晶格的進一步畸變,這樣會使4f電子躍遷幾率增大[2];2.堿土金屬離子摻雜后與Al2O3形成固溶體,調節了Er3+周圍的晶體場[3]。
參考文獻
[1] 洪廣言.稀土發光材料-基礎與應用[M].1版.科學出版社,2011.
[2] 邱關明,黃良釗,張希艷.稀土光學玻璃[M].1版.兵器工業出版社,1989.
[3] 張希艷,盧利平,柏朝暉,等.稀土發光材料[M].國防工業出版社,2005.endprint
摘 要:通過先沉淀后退火法合成了Al2O3:Er3+熒光粉,研究了980nm激光激發下Al2O3:Er3+熒光粉的光致發光性質。為了增強Al2O3:Er3+熒光粉的熒光強度,Ba2+,Ca2+,Sr2+,Mg2+四種離子被摻雜進入了這種熒光粉中。結果了發現,摻雜后的Al2O3:Er3+熒光粉的熒光強度大幅度增加。
關鍵詞:Al2O3:Er3+ 摻雜 熒光
中圖分類號:O765 文獻標識碼:A 文章編號:1674-098X(2014)08(b)-0218-01
在眾多的稀土離子中,Er3+離子是能級最豐富的稀土離子,能夠匹配從紫外光到近紅外光的寬頻段的吸收和發射。近來,Er3+離子摻雜的發光材料被不斷地合成和在不同的領域廣泛研究。其中,Er3+離子摻雜的上轉換材料被廣泛關注,目的是設法提高這些材料的發光強度和發光顏色的可調節性。目前,大多數Er3+離子摻雜的上轉換材料的發光效率很低,即使被認為上轉換效率很高的Er/Yb:NaYF4的熒光效率大約為3%[1],如何大幅度提高上轉換熒光材料的效率就成了一個廣泛關注的研究課題。在本文中,Er3+離子摻雜的Al2O3熒光粉被通過先沉淀后退火法合成,被選擇作為實驗材料。我們提出了通過摻雜不同的堿土金屬離子來進行改變Er3+離子在Al2O3基質環境中的對稱性,從而改變Er3+離子摻雜的Al2O3熒光粉的發光效率的想法。
1 實驗部分
稱量Al(NO3)3·9H2O 2.0151 g溶于25 mL熱水中,并進行不斷的攪拌。然后,加入ErCl3溶液0.5 mL,選擇加入Ba(NO3)2,Ca(NO3)2,Sr(NO3)2, Mg(NO3)2溶液中的一種。稱量NH4F 1.3077 g溶于10 mL水中,然后滴加到混合液中,用氨水調節PH。800度退火2 h,研磨待測試。用Omni-λ3007 型穩態熒光光譜儀測量粉體的熒光光譜。
2 結果和討論
在980nm激發下,Ba2+,Ca2+,Sr2+, Mg2+四種離子摻雜的Al2O3:Er3+熒光材料的光致發光譜被測量,結果如圖1所示。對于Al2O3:Er3+熒光材料,在980 nm激發下,發射出弱的411 nm,455 nm, 547 nm,658 nm,807 nm的熒光峰,這些發射峰來源于2H9/2→4I15/2,4F5/2→4I15/2,4S3/2→4I15/2,4F9/2→4I15/2,4I9/2→4I15/2躍遷。摻雜Ba2+離子后,出現了一系列的光譜性質的變化:①熒光強度比發生了變化,摻雜前547 nm綠光的發射強度小于紅光,摻雜后綠光的發射強度大于紅光;②摻雜導致了每個發射峰的熒光強度增強。其中,增強最大的是547 nm綠光的發射比摻雜前提高了37倍,658 nm紅光也提高了3.5倍左右。而且摻雜前后光譜的形狀也發生了變化,出現了一些不明顯的劈裂結構。摻雜Ca2+離子后,出現了一系列的光譜性質的變化:①熒光強度比變化不大;②摻雜導致了每個發射峰的熒光強度增強,使411 nm的藍光發射變的明顯。其中,增強最大的是658 nm紅光的發射比摻雜前提高了16倍,綠光也提高了10.3倍左右。而且摻雜前后光譜的形狀也發生了變化,出現了一些明顯的劈裂結構。摻雜Sr2+離子后,出現了一系列的光譜性質的變化:①熒光強度比發生了變化,摻雜前547nm綠光的發射強度小于紅光,摻雜后綠光的發射強度幾乎與紅光的發射強度相當;②摻雜導致了每個發射峰的熒光強度增強。其中,增強最大的是547 nm綠光的發射,比摻雜前提高了8倍,658 nm紅光也提高了2倍左右。而且摻雜前后光譜的形狀也發生了變化,出現了一些不明顯的劈裂結構。摻雜Mg2+離子后,出現了一系列的光譜性質的變化:①熒光強度比發生了小的變化;②摻雜導致了每個發射峰的熒光強度增強。其中,547 nm綠光的發射比摻雜前提高了1.25倍,658 nm紅光也提高了1.27倍左右。而且摻雜前后光譜的形狀也發生了變化,出現了一些不明顯的劈裂結構。
以上變化可能來源于兩個原因:1.Al3+的半徑比較小,摻雜半徑大的Er3+后,Er3+作為填隙離子出現在Al2O3晶格中,摻雜堿土金屬離子后導致了晶格的進一步畸變,這樣會使4f電子躍遷幾率增大[2];2.堿土金屬離子摻雜后與Al2O3形成固溶體,調節了Er3+周圍的晶體場[3]。
參考文獻
[1] 洪廣言.稀土發光材料-基礎與應用[M].1版.科學出版社,2011.
[2] 邱關明,黃良釗,張希艷.稀土光學玻璃[M].1版.兵器工業出版社,1989.
[3] 張希艷,盧利平,柏朝暉,等.稀土發光材料[M].國防工業出版社,2005.endprint
摘 要:通過先沉淀后退火法合成了Al2O3:Er3+熒光粉,研究了980nm激光激發下Al2O3:Er3+熒光粉的光致發光性質。為了增強Al2O3:Er3+熒光粉的熒光強度,Ba2+,Ca2+,Sr2+,Mg2+四種離子被摻雜進入了這種熒光粉中。結果了發現,摻雜后的Al2O3:Er3+熒光粉的熒光強度大幅度增加。
關鍵詞:Al2O3:Er3+ 摻雜 熒光
中圖分類號:O765 文獻標識碼:A 文章編號:1674-098X(2014)08(b)-0218-01
在眾多的稀土離子中,Er3+離子是能級最豐富的稀土離子,能夠匹配從紫外光到近紅外光的寬頻段的吸收和發射。近來,Er3+離子摻雜的發光材料被不斷地合成和在不同的領域廣泛研究。其中,Er3+離子摻雜的上轉換材料被廣泛關注,目的是設法提高這些材料的發光強度和發光顏色的可調節性。目前,大多數Er3+離子摻雜的上轉換材料的發光效率很低,即使被認為上轉換效率很高的Er/Yb:NaYF4的熒光效率大約為3%[1],如何大幅度提高上轉換熒光材料的效率就成了一個廣泛關注的研究課題。在本文中,Er3+離子摻雜的Al2O3熒光粉被通過先沉淀后退火法合成,被選擇作為實驗材料。我們提出了通過摻雜不同的堿土金屬離子來進行改變Er3+離子在Al2O3基質環境中的對稱性,從而改變Er3+離子摻雜的Al2O3熒光粉的發光效率的想法。
1 實驗部分
稱量Al(NO3)3·9H2O 2.0151 g溶于25 mL熱水中,并進行不斷的攪拌。然后,加入ErCl3溶液0.5 mL,選擇加入Ba(NO3)2,Ca(NO3)2,Sr(NO3)2, Mg(NO3)2溶液中的一種。稱量NH4F 1.3077 g溶于10 mL水中,然后滴加到混合液中,用氨水調節PH。800度退火2 h,研磨待測試。用Omni-λ3007 型穩態熒光光譜儀測量粉體的熒光光譜。
2 結果和討論
在980nm激發下,Ba2+,Ca2+,Sr2+, Mg2+四種離子摻雜的Al2O3:Er3+熒光材料的光致發光譜被測量,結果如圖1所示。對于Al2O3:Er3+熒光材料,在980 nm激發下,發射出弱的411 nm,455 nm, 547 nm,658 nm,807 nm的熒光峰,這些發射峰來源于2H9/2→4I15/2,4F5/2→4I15/2,4S3/2→4I15/2,4F9/2→4I15/2,4I9/2→4I15/2躍遷。摻雜Ba2+離子后,出現了一系列的光譜性質的變化:①熒光強度比發生了變化,摻雜前547 nm綠光的發射強度小于紅光,摻雜后綠光的發射強度大于紅光;②摻雜導致了每個發射峰的熒光強度增強。其中,增強最大的是547 nm綠光的發射比摻雜前提高了37倍,658 nm紅光也提高了3.5倍左右。而且摻雜前后光譜的形狀也發生了變化,出現了一些不明顯的劈裂結構。摻雜Ca2+離子后,出現了一系列的光譜性質的變化:①熒光強度比變化不大;②摻雜導致了每個發射峰的熒光強度增強,使411 nm的藍光發射變的明顯。其中,增強最大的是658 nm紅光的發射比摻雜前提高了16倍,綠光也提高了10.3倍左右。而且摻雜前后光譜的形狀也發生了變化,出現了一些明顯的劈裂結構。摻雜Sr2+離子后,出現了一系列的光譜性質的變化:①熒光強度比發生了變化,摻雜前547nm綠光的發射強度小于紅光,摻雜后綠光的發射強度幾乎與紅光的發射強度相當;②摻雜導致了每個發射峰的熒光強度增強。其中,增強最大的是547 nm綠光的發射,比摻雜前提高了8倍,658 nm紅光也提高了2倍左右。而且摻雜前后光譜的形狀也發生了變化,出現了一些不明顯的劈裂結構。摻雜Mg2+離子后,出現了一系列的光譜性質的變化:①熒光強度比發生了小的變化;②摻雜導致了每個發射峰的熒光強度增強。其中,547 nm綠光的發射比摻雜前提高了1.25倍,658 nm紅光也提高了1.27倍左右。而且摻雜前后光譜的形狀也發生了變化,出現了一些不明顯的劈裂結構。
以上變化可能來源于兩個原因:1.Al3+的半徑比較小,摻雜半徑大的Er3+后,Er3+作為填隙離子出現在Al2O3晶格中,摻雜堿土金屬離子后導致了晶格的進一步畸變,這樣會使4f電子躍遷幾率增大[2];2.堿土金屬離子摻雜后與Al2O3形成固溶體,調節了Er3+周圍的晶體場[3]。
參考文獻
[1] 洪廣言.稀土發光材料-基礎與應用[M].1版.科學出版社,2011.
[2] 邱關明,黃良釗,張希艷.稀土光學玻璃[M].1版.兵器工業出版社,1989.
[3] 張希艷,盧利平,柏朝暉,等.稀土發光材料[M].國防工業出版社,2005.endprint