999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

抗生素的高級氧化降解工藝與機理研究進展165符荷花,陳猛 熊小京(165)

2014-11-28 13:43:15
綠色科技 2014年10期

摘要:介紹了高級氧化抗生素廢水處理工藝,并綜述了常見類型抗生素(β-內酰胺類、磺胺類、大環內酯類、喹諾酮類)的降解機理。

關鍵詞:抗生素廢水;高級氧化工藝;降解機理

中圖分類號:X703.1文獻標識碼:A文章編號:16749944(2014)10016504

1引言

抗生素廣泛存在于抗生素生產廢水、醫院廢水[1~3] 、城市污水處理廠[4, 5]、養殖廢水、地表水[2, 6]、飲用水[2, 3]及土壤[7]中,其殘留水平從ng/L到μg/L,檢出的抗生素包括β-內酰胺類、磺胺類、大環內酯類、氟喹諾酮類、四環素類、林可胺類等??股厣a廢水、醫院廢水、養殖廢水和生活污水是抗生素的主要環境污染源??股貙偕镫y降解物質[8, 9],可長期殘留在環境中,對生態環境與人居的危害有:①引起微生物耐藥性[10];②影響水生生物生長和繁殖[11, 12];③影響植物生長[13, 14];④影響人類健康。我國是抗生素生產和使用大國,因此,抗生素污染控制技術研究與應用已成為當前環保領域的熱點。

本文系統介紹常用的高級氧化抗生素處理工藝,并根據抗生素不同分類,對近年β-內酰胺類、磺胺類、大環內酯類、喹諾酮類抗生素高級氧化降解機理的研究進展進行綜述。

2抗生素高級氧化處理工藝研究

4結論

臭氧氧化和各種Fenton氧化工藝對抗生素去除效果較高,可作為處理抗生素廢水的首選。高級氧化對青霉素類降解途徑主要分為內酰胺環開環和羥基化(苯環位置)兩種;對磺胺類經降解最終生成SO42-、NO3-、NH4+、CO2及其他難降解中間產物;對喹諾酮類降解包括羧酸鍵斷裂、與哌嗪基連接乙基斷裂、環丙基和氟鍵斷裂、哌嗪環開環等。

參考文獻:

[1] Brown K.D., Kulis J., Thomson B., et al. Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico[J]. Science of The Total Environment, 2006, 366(2-3): 772~783.

[2] Watkinson A.J., Murby E.J., Kolpin D.W., et al. The occurrence of antibiotics in an urban watershed: From wastewater to drinking water[J]. Science of The Total Environment, 2009, 407(8): 2711~2723.

[3] Chang X., Meyer M.T., Liu X., et al. Determination of antibiotics in sewage from hospitals, nursery and slaughter house, wastewater treatment plant and source water in Chongqing region of Three Gorge Reservoir in China[J]. Environmental Pollution, 2010, 158(5): 1444~1450.

[4] Gbel A., Thomsen A., Mcardell C.S., et al. Occurrence and sorption behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment[J]. Environmental Science & Technology, 2005, 39(11): 3981~3989.

[5] Gulkowska A., Leung H.W., So M.K., et al. Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen, China[J]. Water Research, 2008, 42(1): 395~403.

[6] Golet E.M., Alder A.C., Giger W. Environmental exposure and risk assessment of fluoroquinolone antibacterial agents in wastewater and river water of the Glatt Valley Watershed, Switzerland[J]. Environmental Science &Technology, 2002, 36(17): 3645~3651.

[7] Schauss K., Focks A., Heuer H., et al. Analysis, fate and effects of the antibiotic sulfadiazine in soil ecosystems[J]. TrAC Trends in Analytical Chemistry, 2009, 28(5): 612~618.

[8] Al-Ahmad A., Daschner F.,Kümmerer K. Biodegradability of cefotiam, ciprofloxacin, meropenem, penicillin G, and sulfamethoxazole and inhibition of waste water bacteria[J]. Archives of Environmental Contamination and Toxicology, 1999, 37(2): 158~163.endprint

[9] Ingerslev F., Halling S. B. Biodegradability properties of sulfonamides in activated sludge[J]. Environmental Toxicology and Chemistry, 2000, 19(10): 2467~2473.

[10] Reinthaler F., Posch J., Feierl G., et al. Antibiotic resistance of E. coli in sewage and sludge[J]. Water Research, 2003, 37(8): 1685~1690.

[11] Baran W., Sochacka J., Wardas W. Toxicity and biodegradability of sulfonamides and products of their photocatalytic degradation in aqueous solutions[J]. Chemosphere, 2006, 65(8): 1295~1299.

[12] Sanderson H., Brain R.A., Johnson D.J., et al. Toxicity classification and evaluation of four pharmaceuticals classes: antibiotics, antineoplastics, cardiovascular, and sex hormones[J]. Toxicology, 2004, 203(1-3): 27~40.

[13] Batchelder A. Chlortetracycline and oxytetracycline effects on plant growth and development in liquid cultures[J]. Journal of Environ. Quality, 1981, 10: 515~518.

[14] Migliore L., Civitareale C., Brambilla G., et al. Effects of sulphadimethoxine on cosmopolitan weeds (Amaranthus retroflexus L., Plantago major L. and Rumex acetosella L) [J]. Agriculture, Ecosystems & Environment, 1997, 65(2): 163~168.

[15] Abellán M.N., Bayarri B., Giménez J., et al. Photocatalytic degradation of sulfamethoxazole in aqueous suspension of TiO2[J]. Applied Catalysis B: Environmental, 2007, 74(3): 233~241.

[16] Addamo M., Augugliaro V., Paola A.D., et al. Removal of drugs in aqueous systems by photoassisted degradation[J]. Journal of applied electrochemistry, 2005, 35(7): 765~774.

[17] Lin A.Y.C., Lin C.F., Chiou J.M., et al. O3 and O3/H2O2 treatment of sulfonamide and macrolide antibiotics in wastewater[J]. Journal of Hazardous Materials, 2009, 171(1): 452~458.

[18] De Witte B., Dewulf J., Demeestere K., et al. Ozonation and advanced oxidation by the peroxone process of ciprofloxacin in water[J]. Journal of Hazardous Materials, 2009, 161(2): 701~708.

[19] Dalmázio I., Almeida M.O., Augusti R., et al. Monitoring the degradation of tetracycline by ozone in aqueous medium via atmospheric pressure ionization mass spectrometry[J]. Journal of the American Society for Mass Spectrometry, 2007, 18(4): 679~687.

[20] Ay F., Kargi F. Advanced oxidation of amoxicillin by Fenton's reagent treatment[J]. Journal of Hazardous Materials, 2010, 179(1): 622~627.

[21] Rozas O., Contreras D., Mondaca M.A., et al. Experimental design of Fenton and photo-Fenton reactions for the treatment of ampicillin solutions[J]. Journal of Hazardous Materials, 2010, 177(1): 1025~1030.endprint

[22] Fan X., Hao H., Shen X., et al. Removal and degradation pathway study of sulfasalazine with Fenton-like reaction[J]. Journal of Hazardous Materials, 2011, 190(1): 493~500.

[23] Dirany A., Sirés I., Oturan N., et al. Electrochemical abatement of the antibiotic sulfamethoxazole from water[J]. Chemosphere, 2010, 81(5): 594~602.

[24] Elmolla E., Chaudhuri M. Optimization of Fenton process for treatment of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution[J]. Journal of hazardous materials, 2009, 170(2): 666~672.

[25] Klauson D., Babkina J.,Stepanova K., et al. Aqueous photocatalytic oxidation of amoxicillin[J]. Catalysis Today, 2010, 151(1): 39~45.

[26] Trovo A.G., Nogueira R.F.P., Aguera A., et al. Degradation of the antibiotic amoxicillin by photo-Fenton process - Chemical and toxicological assessment[J]. Water Research, 2011, 45(3): 1394~1402.

[27] Calza P. Photocatalytic transformations of sulphonamides on titanium dioxide[J]. Applied Catalysis B: Environmental, 2004, 53(1): 63~69.

[28] Trovó A.G.,Nogueira R.F.P.,Agüera A., et al. Degradation of sulfamethoxazole in water by solar photo-Fenton. Chemical and toxicological evaluation[J]. Water Research, 2009, 43(16): 3922~3931.

[29] Lange F.,Cornelissen S.,Kubac D., et al. Degradation of macrolide antibiotics by ozone: A mechanistic case study with clarithromycin[J]. Chemosphere, 2006, 65(1): 17~23.

[30] Tong L.,Eichhorn P.,Perez S., et al. Photodegradation of azithromycin in various aqueous systems under simulated and natural solar radiation: Kinetics and identification of photoproducts[J]. Chemosphere, 2011, 83(3): 340~348.

[31] An T.,Yang H.,Li G., et al. Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water[J]. Applied Catalysis B-Environmental, 2010, 94(3-4): 288~294.

[32] Li Y., Niu J.,Wang W. Photolysis of Enrofloxacin in aqueous systems under simulated sunlight irradiation: Kinetics, mechanism and toxicity of photolysis products[J]. Chemosphere, 2011, 85(5): 892~897.endprint

[22] Fan X., Hao H., Shen X., et al. Removal and degradation pathway study of sulfasalazine with Fenton-like reaction[J]. Journal of Hazardous Materials, 2011, 190(1): 493~500.

[23] Dirany A., Sirés I., Oturan N., et al. Electrochemical abatement of the antibiotic sulfamethoxazole from water[J]. Chemosphere, 2010, 81(5): 594~602.

[24] Elmolla E., Chaudhuri M. Optimization of Fenton process for treatment of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution[J]. Journal of hazardous materials, 2009, 170(2): 666~672.

[25] Klauson D., Babkina J.,Stepanova K., et al. Aqueous photocatalytic oxidation of amoxicillin[J]. Catalysis Today, 2010, 151(1): 39~45.

[26] Trovo A.G., Nogueira R.F.P., Aguera A., et al. Degradation of the antibiotic amoxicillin by photo-Fenton process - Chemical and toxicological assessment[J]. Water Research, 2011, 45(3): 1394~1402.

[27] Calza P. Photocatalytic transformations of sulphonamides on titanium dioxide[J]. Applied Catalysis B: Environmental, 2004, 53(1): 63~69.

[28] Trovó A.G.,Nogueira R.F.P.,Agüera A., et al. Degradation of sulfamethoxazole in water by solar photo-Fenton. Chemical and toxicological evaluation[J]. Water Research, 2009, 43(16): 3922~3931.

[29] Lange F.,Cornelissen S.,Kubac D., et al. Degradation of macrolide antibiotics by ozone: A mechanistic case study with clarithromycin[J]. Chemosphere, 2006, 65(1): 17~23.

[30] Tong L.,Eichhorn P.,Perez S., et al. Photodegradation of azithromycin in various aqueous systems under simulated and natural solar radiation: Kinetics and identification of photoproducts[J]. Chemosphere, 2011, 83(3): 340~348.

[31] An T.,Yang H.,Li G., et al. Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water[J]. Applied Catalysis B-Environmental, 2010, 94(3-4): 288~294.

[32] Li Y., Niu J.,Wang W. Photolysis of Enrofloxacin in aqueous systems under simulated sunlight irradiation: Kinetics, mechanism and toxicity of photolysis products[J]. Chemosphere, 2011, 85(5): 892~897.endprint

[22] Fan X., Hao H., Shen X., et al. Removal and degradation pathway study of sulfasalazine with Fenton-like reaction[J]. Journal of Hazardous Materials, 2011, 190(1): 493~500.

[23] Dirany A., Sirés I., Oturan N., et al. Electrochemical abatement of the antibiotic sulfamethoxazole from water[J]. Chemosphere, 2010, 81(5): 594~602.

[24] Elmolla E., Chaudhuri M. Optimization of Fenton process for treatment of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution[J]. Journal of hazardous materials, 2009, 170(2): 666~672.

[25] Klauson D., Babkina J.,Stepanova K., et al. Aqueous photocatalytic oxidation of amoxicillin[J]. Catalysis Today, 2010, 151(1): 39~45.

[26] Trovo A.G., Nogueira R.F.P., Aguera A., et al. Degradation of the antibiotic amoxicillin by photo-Fenton process - Chemical and toxicological assessment[J]. Water Research, 2011, 45(3): 1394~1402.

[27] Calza P. Photocatalytic transformations of sulphonamides on titanium dioxide[J]. Applied Catalysis B: Environmental, 2004, 53(1): 63~69.

[28] Trovó A.G.,Nogueira R.F.P.,Agüera A., et al. Degradation of sulfamethoxazole in water by solar photo-Fenton. Chemical and toxicological evaluation[J]. Water Research, 2009, 43(16): 3922~3931.

[29] Lange F.,Cornelissen S.,Kubac D., et al. Degradation of macrolide antibiotics by ozone: A mechanistic case study with clarithromycin[J]. Chemosphere, 2006, 65(1): 17~23.

[30] Tong L.,Eichhorn P.,Perez S., et al. Photodegradation of azithromycin in various aqueous systems under simulated and natural solar radiation: Kinetics and identification of photoproducts[J]. Chemosphere, 2011, 83(3): 340~348.

[31] An T.,Yang H.,Li G., et al. Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water[J]. Applied Catalysis B-Environmental, 2010, 94(3-4): 288~294.

[32] Li Y., Niu J.,Wang W. Photolysis of Enrofloxacin in aqueous systems under simulated sunlight irradiation: Kinetics, mechanism and toxicity of photolysis products[J]. Chemosphere, 2011, 85(5): 892~897.endprint

主站蜘蛛池模板: 色综合久久久久8天国| 中文字幕欧美日韩高清| 亚洲日韩国产精品综合在线观看| 久久这里只精品热免费99| 美女一级毛片无遮挡内谢| 最新亚洲av女人的天堂| 露脸真实国语乱在线观看| 欧美日韩国产系列在线观看| 手机在线免费毛片| 亚洲色图欧美激情| 无码免费视频| av一区二区三区高清久久| 91亚洲精品国产自在现线| 国产精欧美一区二区三区| 幺女国产一级毛片| 四虎免费视频网站| 99在线视频免费| 国产午夜精品鲁丝片| 中文成人在线| 毛片手机在线看| 国内精自线i品一区202| 欧美性爱精品一区二区三区 | 国产成人福利在线| 全色黄大色大片免费久久老太| 久久精品一卡日本电影| 福利在线不卡一区| 亚洲国产理论片在线播放| 日本人妻一区二区三区不卡影院 | 久久精品66| 国产成人精品视频一区视频二区| 成人小视频在线观看免费| 九九热在线视频| 欧美中出一区二区| 一级不卡毛片| 久久综合结合久久狠狠狠97色| 九色在线观看视频| 一级毛片在线播放| 久久综合色天堂av| 色综合a怡红院怡红院首页| 福利小视频在线播放| 69综合网| 无码专区国产精品第一页| 国产成在线观看免费视频| 国产三级毛片| 国产欧美日韩视频一区二区三区| 亚洲一级毛片| 97se综合| 在线观看视频99| 亚洲日本中文字幕天堂网| 亚洲首页在线观看| 亚洲成A人V欧美综合| 手机在线国产精品| 国产嫩草在线观看| 欧美激情第一欧美在线| 日韩无码黄色| 国产精品国产三级国产专业不 | 国产91视频免费观看| 五月婷婷综合网| 毛片免费观看视频| 国产va欧美va在线观看| 久久一级电影| 国产成人艳妇AA视频在线| 无码AV高清毛片中国一级毛片 | 国产一级毛片yw| 国产凹凸一区在线观看视频| 粗大猛烈进出高潮视频无码| 久久精品人人做人人爽电影蜜月| 亚洲国产91人成在线| 亚洲成年网站在线观看| 国产成人区在线观看视频| 亚亚洲乱码一二三四区| 亚洲国产精品成人久久综合影院| 日韩午夜片| 国产精品页| 一级黄色网站在线免费看| 性欧美在线| 毛片视频网址| 免费久久一级欧美特大黄| 国产欧美中文字幕| 中文字幕在线永久在线视频2020| av天堂最新版在线| AV网站中文|