999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于先進(jìn)調(diào)制的高速可見光通信技術(shù)

2014-12-13 13:18:23遲楠黃星星王一光
中興通訊技術(shù) 2014年6期

遲楠+黃星星+王一光

中圖分類號(hào):TN929.1 ? ?文獻(xiàn)標(biāo)志碼:A ? 文章編號(hào):1009-6868 (2014) 06-0016-005

摘要:基于發(fā)光二極管(LED)調(diào)制帶寬限制了可見光通信(VLC)系統(tǒng)傳輸速率這一問題,從VLC系統(tǒng)的先進(jìn)調(diào)制技術(shù)出發(fā),探討了類平衡-正交頻分復(fù)用、無載波幅相調(diào)制和頻域均衡單載波調(diào)制3種調(diào)制技術(shù)。對(duì)這3種調(diào)制技術(shù)原理和實(shí)驗(yàn)結(jié)果的分析與討論,驗(yàn)證了先進(jìn)調(diào)制技術(shù)在提升VLC系統(tǒng)傳輸容量上的可行性。

關(guān)鍵詞:?可見光通信;正交頻分復(fù)用;無載波幅相調(diào)制;頻域均衡單載波調(diào)制;類平衡探測

Abstract:We introduce three formats, based on advanced modulation, that improve transmission. These formats are quasi-balanced detection orthogonal frequency-division multiplexing (OFDM), carrier-less amplitude and phase modulation, and single carrier-frequency domain equalization (SC-FDE). We determine the feasibility of these schemes for improving transmission in a VLC system. We analyze the principles of these three modulation formants and provide experimental results.

Keywords:?visible light communication; orthogonal frequency division multiplexing; carrier-less amplitude and phase modulation; single carrier-frequency domain equalization; quasi-balanced detection

可見光發(fā)光二極管(LED)具有高亮度、高可靠性、能量損耗低和壽命長等許多優(yōu)良的特性,可用于全色顯示、交通信號(hào)指示和照明光源等,是公認(rèn)的下一代綠色照明產(chǎn)品。此外,可見光LED還具有調(diào)制性能好、響應(yīng)靈敏度高的優(yōu)點(diǎn),利用LED的這種特性,我們還可以將信號(hào)調(diào)制到LED所發(fā)出的可見光上進(jìn)行傳輸。LED可以將照明與數(shù)據(jù)傳輸結(jié)合起來,促進(jìn)了一種新型的無線通信技術(shù),即可見光通信(VLC)技術(shù)的發(fā)展[1]。VLC利用的可見光波段是未受到管制的頻譜,無需授權(quán)即可使用。與傳統(tǒng)的射頻無線通信技術(shù)相比,VLC具有如下優(yōu)點(diǎn)[2-4]:

(1)綠色通信,安全環(huán)保,沒有射頻電磁輻射,且LED發(fā)出的白光對(duì)于人眼安全。

(2)能夠同時(shí)實(shí)現(xiàn)通信與照明。

(3)白光不可穿透墻壁等物體,因此可見光通信具有高度的保密性。

(4)可見光不受射頻信號(hào)的電磁干擾,可以應(yīng)用在電磁敏感環(huán)境中,如機(jī)艙、醫(yī)院等。

(5)由于頻譜無需授權(quán)即可使用,所以可見光通信應(yīng)用靈活,可以單獨(dú)使用,也可以作為射頻無線設(shè)備的有效備份。

目前,VLC得到了全球研究者越來越多的關(guān)注[5-13]。VLC技術(shù)已經(jīng)取得迅猛發(fā)展,傳輸速率從最開始的幾十兆比特每秒[5-6]到500 Mb/s[7]再到800 Mb/s[8],目前已經(jīng)突破了吉比特每秒[9-10]。隨著與VLC相關(guān)系統(tǒng)器件的開發(fā),系統(tǒng)通信速率還會(huì)有更高的提升。

但是VLC技術(shù)通信速率的提高也存在著很多限制因素,其中最主要的挑戰(zhàn)是LED有限的調(diào)制帶寬。目前,普通商用白光LED的3 dB調(diào)制帶寬都低于10 MHz,這很大程度上限制了VLC系統(tǒng)的傳輸速率。為突破調(diào)制帶寬這一“瓶頸”,許多技術(shù)都被應(yīng)用到VLC系統(tǒng),如系統(tǒng)多維復(fù)用技術(shù)[11]、預(yù)均衡技術(shù)[12]、后均衡技術(shù)[13]等等,來提升VLC系統(tǒng)傳輸速率。采用先進(jìn)調(diào)制技術(shù),是克服可見光通信系統(tǒng)調(diào)制帶寬限制,提升系統(tǒng)傳輸容量的有效方法。在VLC系統(tǒng)中,可以采用的先進(jìn)調(diào)制技術(shù)包括類平衡探測-正交頻分復(fù)用(OFDM)[14]、無載波幅相調(diào)制(CAP)[15]和頻域均衡單載波調(diào)制技術(shù)(SC-FDE)[16]。本文從提升VLC系統(tǒng)傳輸容量出發(fā),分析這3種先進(jìn)調(diào)制技術(shù)的特點(diǎn)與實(shí)現(xiàn)方式,實(shí)現(xiàn)了高速VLC傳輸系統(tǒng)。通過對(duì)這3種調(diào)制技術(shù)原理和實(shí)驗(yàn)結(jié)果的分析與討論,驗(yàn)證了先進(jìn)調(diào)制技術(shù)在提升VLC系統(tǒng)傳輸容量上的可行性。

1 類平衡探測-正交頻分

復(fù)用技術(shù)

類平衡探測-正交頻分復(fù)用技術(shù)(QBD-OFDM)結(jié)合類平衡探測編碼技術(shù)和OFDM技術(shù)[14]。OFDM信號(hào)數(shù)據(jù)被分為多個(gè)數(shù)據(jù)塊,每個(gè)數(shù)據(jù)塊有兩個(gè)符號(hào)的數(shù)據(jù)。在相同的數(shù)據(jù)塊,第二個(gè)符號(hào)中的信號(hào)是和第一個(gè)符號(hào)中的信號(hào)在運(yùn)算符號(hào)上是相反的。經(jīng)過理論推導(dǎo),發(fā)現(xiàn)二階互調(diào)制失真、直流電流、可以完全消除,而且接收機(jī)的靈敏度可以提高3 dB,因此可以提高信噪比。

我們采用QBD-OFDM技術(shù),實(shí)現(xiàn)了可達(dá)到2.1 Gb/s實(shí)際物理數(shù)據(jù)速率,并使傳輸距離達(dá)到2.5 m。圖1為所提出的QBD-OFDM實(shí)驗(yàn)的原理。實(shí)驗(yàn)中,QBD-OFDM信號(hào)由任意波形發(fā)生器(AWG)產(chǎn)生,經(jīng)過低通濾波(LPF)、電放大器(EA)和偏置樹(Bias Tee)后調(diào)制到紅綠藍(lán)發(fā)光二極管(RGB-LED)不同顏色的芯片上。經(jīng)過自由空間傳輸后,在接收端由棱鏡聚光后,用濾光片將3個(gè)波長的光分開,最后采用雪崩光電二極管(APD)探測器接收。然后進(jìn)行后端的均衡與解調(diào)算法處理。endprint

結(jié)合波分復(fù)用(WDM)和類平衡探測子載波復(fù)用,很好地利用了多色LED的波分復(fù)用,提供了更多的傳輸信道。利用類平衡探測技術(shù)很好地避免了OFDM提供更多子載波時(shí)的峰均功率比(PAPR)限制,有效提升了多色LED傳輸速度,提高了系統(tǒng)誤碼率(BER)性能,同時(shí)增加了可見光通信的傳輸距離。圖2給出QBD-OFDM技術(shù)和直接探測光正交頻分復(fù)用(DDO-OFDM)技術(shù)的對(duì)比。兩個(gè)子信道帶寬為,Sub1:6.25~56.25 MHz,Sub2:56.25~106.25 MHz。每個(gè)子信道對(duì)應(yīng)的調(diào)制階數(shù)分別為,紅光:256正交幅度調(diào)制(256QAM)和128正交幅度調(diào)制(128QAM),綠光:128QAM和64QAM,藍(lán)光:128QAM和128QAM。因此,紅光、綠光和藍(lán)光的數(shù)據(jù)速率分別為750 Mb/s、650 Mb/s和700 Mb/s,總數(shù)據(jù)速率達(dá)到2.1 Gb/s,實(shí)驗(yàn)距離可以達(dá)到2.5 m。在距離為0.5 m時(shí),紅綠藍(lán)3色對(duì)應(yīng)的Sub1、Sub2兩個(gè)子信道的BER提升為25.6 dB、31 dB、30.3 dB、25.8 dB、21.8 dB和19.3 dB。當(dāng)可見光通信系統(tǒng)的通信距離增加時(shí),系統(tǒng)誤碼率會(huì)增加,這是因?yàn)榫嚯x增加導(dǎo)致系統(tǒng)接收到的光信號(hào)減弱,系統(tǒng)信噪比降低,誤碼率增加。繼續(xù)增加距離會(huì)使BER超過前向糾錯(cuò)碼的門限,為使距離增加,就要使系統(tǒng)的傳輸速率降低。藍(lán)光LED采用QBD-OFDM和DDO-OFDM的對(duì)應(yīng)的Sub1、Sub2兩個(gè)子信道的星座圖如圖2(d)的(i)、(ii)、(iii)和(iv)所示。

2 無載波幅相

調(diào)制技術(shù)

無載波幅度相位調(diào)制(CAP)是正交幅度調(diào)制的一個(gè)變種多階編碼調(diào)制技術(shù),可以使用模擬或數(shù)字濾波器,實(shí)現(xiàn)靈活的子帶劃分和高階調(diào)制,減少了計(jì)算的復(fù)雜性和系統(tǒng)結(jié)構(gòu),在數(shù)字用戶線路有著廣泛的應(yīng)用。

無載波幅相調(diào)制信號(hào)可以表示如下:

[st=at?fIt-bt?fQt] ? ?(1)

這里a(t)和b(t)是I路和Q路的原始比特序列經(jīng)過編碼和上采樣之后的信號(hào)。[fIt=gtcos2πfct] 和[fQt=gtsin2πfct]是對(duì)應(yīng)的整形濾波器的時(shí)域函數(shù),它們形成一對(duì)希爾伯特變換對(duì)。

假設(shè)傳輸信道是理想的,在接收機(jī)端兩個(gè)匹配濾波器的輸出可以表示如下:

這里[mIt=fI-t] 和[mQt=fQ-t]是對(duì)應(yīng)的匹配濾波器的脈沖響應(yīng)。利用對(duì)應(yīng)的匹配濾波器在接收端就可以解調(diào)出原始信號(hào)。

我們采用了無載波幅相調(diào)制技術(shù),結(jié)合先進(jìn)預(yù)均衡與后均衡算,后均衡算法采用改進(jìn)級(jí)聯(lián)多模算法(CMMA),實(shí)現(xiàn)了1.35 Gb/s可見光傳輸系統(tǒng)實(shí)驗(yàn)[15]。實(shí)驗(yàn)原理圖和實(shí)驗(yàn)裝置圖如圖3所示。

圖4(a)到圖4(c)為采用改進(jìn)CMMA均衡算法所測得BER和距離的關(guān)系。實(shí)驗(yàn)中,每個(gè)波長上采用頻分復(fù)用技術(shù),將不同用戶的信號(hào)分別調(diào)制到3個(gè)子載波上,每個(gè)子載波調(diào)制信號(hào)帶寬為25 MHz,調(diào)制階數(shù)為64QAM,因此每個(gè)子載波的傳輸速率為150 Mb/s,每個(gè)波長的傳輸速率為450 Mb/s。在發(fā)射和接收的距離為30 cm時(shí),經(jīng)過波分復(fù)用后該系統(tǒng)總的傳輸速率達(dá)到1.35 Gb/s。圖4(d)對(duì)比了CMMA和改進(jìn)CMMA的性能,改進(jìn)CMMA性能要優(yōu)于CMMA,尤其是在第3個(gè)子帶更為明顯。

3 頻域均衡單載波調(diào)制技術(shù)

基于頻域均衡的單載波調(diào)制技術(shù)(SC-FDE)是基于單載波的高頻譜效率調(diào)制技術(shù),該調(diào)制技術(shù)頻譜效率和OFDM一致,復(fù)雜度一致。可見光通信系統(tǒng)是一個(gè)非線性非常嚴(yán)重的系統(tǒng),OFDM存在PAPR的缺點(diǎn),高PAPR對(duì)于可見光系統(tǒng)是一個(gè)非常大的缺點(diǎn),而SC-FDE相比于OFDM具有一定優(yōu)勢(shì),因?yàn)镾C-FDE擁有更小的PAPR,其調(diào)制/解調(diào)原理如圖5所示。SC-FDE調(diào)制技術(shù)和OFDM過程基本一致,但SC-FDE技術(shù)把IFFT變換從系統(tǒng)發(fā)射端移到了系統(tǒng)接收端。

采用SC-FDE技術(shù),使用RGB-LED波分復(fù)用技術(shù)和高階調(diào)制格式,并在頻域采用預(yù)均衡和后均衡技術(shù),可以在LED 3 dB帶寬只有10 MHz的條件下取得3.25 Gb/s的速率[16]。如圖6(a)所示。該速率是在發(fā)射和接收距離小于1 cm條件下測得,預(yù)均衡后的帶寬為125 MHz,紅光和綠光都采用512QAM,藍(lán)光則采用256QAM。圖6(b)、圖6(c)和圖6(d)分別為紅綠藍(lán)3色BER與距離的關(guān)系,并給出了每種顏色光有無預(yù)均衡的性能對(duì)比。

4 結(jié)束語

本文針對(duì)可見光通信系統(tǒng)的調(diào)制帶寬低問題,采用先進(jìn)調(diào)制方式,突破帶寬限制,實(shí)現(xiàn)可見光通信系統(tǒng)大容量傳輸。本文分析了類平衡-正交頻分復(fù)用、無載波幅相調(diào)制和頻域均衡單載波調(diào)制技術(shù)。通過對(duì)這3種調(diào)制技術(shù)原理和實(shí)驗(yàn)結(jié)果的分析與討論,驗(yàn)證了先進(jìn)調(diào)制技術(shù)在提升VLC系統(tǒng)傳輸容量上的可行性。因此,先進(jìn)調(diào)制格式技術(shù)是實(shí)現(xiàn)高速VLC系統(tǒng)非常重要的途徑。

參考文獻(xiàn)

[1] O'BRIEN D, LE M H, ZENG L, et al. Indoor visible light communications: challenges and prospects [C]//Proceedings of the Optical Engineering Applications. International Society for Optics and Photonics, 2008: 709106-709106-9.

[2] LANGER K D, VUCIC J, KOTTKE C, et al. Advances and prospects in high-speed information broadcast using phosphorescent white-light LEDs [C]//Proceedings of the Transparent Optical Networks, 2009. ICTON'09. 11th International Conference on. IEEE, 2009: 1-6.endprint

[3] CUI K, CHEN G, XU Z, et al. Line-of-sight visible light communication system design and demonstration [C]//Proceedings of the Communication Systems Networks and Digital Signal Processing (CSNDSP), 2010 7th International Symposium on. IEEE, 2010: 621-625.

[4] TANAKA Y, HARUYAMA S, NAKAGAWA M. Wireless optical transmissions with white colored LED for wireless home links [C]//Proceedings of the Personal, Indoor and Mobile Radio Communications, 2000. PIMRC 2000. The 11th IEEE International Symposium on. IEEE, 2000, 2: 1325-1329.

[5] LE M H, OBRIEN D. Faulkner et al. High-speed visible light communications using multiple-resonant equalization [J]. IEEE Photon. Technol. Lett. 2008, 20(14): 1243-1245.

[6] LE M H, OBRIEN D, FAULKNER G, et al. 80 Mb/s visible light communications using pre-equalized white LED [C]//Proceedings of the ECOC 2008, 2008: 6.09.

[7] VUCIC J, KOTTKE C, NERRETER S, et al. 513 Mb/s visible light communications link based on DMT-modulation of a white LED [J]. Lightw. Technol. 2010, 28(24): 3512-3518.

[8] CHI N, WANG Y Q, WANG Y G, et al. Ultra-high-speed single red-green-blue light-emitting diode-based visible light communication system utilizing advanced modulation formats [J]. Chinese Opt. Lett. 2014, 12(1):10605.

[9] KHALID A M, COSSU G, CORSINI R, et al. 1 Gb/s Transmission Over a Phosphorescent White LED by Using Rate-Adaptive Discrete Multitone Modulation [J]. IEEE Photon. J. 2012, 4(5): 1465-1473.

[10] COSSU G, KHALID A M, CHOUDHURY P, et al. 3.4 Gb/s visible optical wireless transmission based on RGB LED [J]. Opt. Express, 2012, 20(26): B501-B506.

[11] WANG Y Q, YANG C, WANG Y G, et al. Gigabit polarization division multiplexing in visible light communication [J]. Optics Letters, 2014, 39(7): 1823-1826.

[12] FUJIMOTO N, MOCHIZUKI H. 477 Mb/s visible light transmission based on OOK-NRZ modulation using a single commercially available visible LED and a practical LED driver with a pre-emphasis circuit [C]//Proceedings of the National Fiber Optic Engineers Conference. Optical Society of America, 2013: JTh2A. 73.

[13] LI H, CHEN X, HUANG B, et al. High Bandwidth Visible Light Communications Based on a Post-Equalization Circuit [J]. IEEE Photon. Technol. Lett., 2014, 26(2): 119-122.

[14] WANG Y, CHI N, WANG Y, et al. High-speed quasi-balanced detection OFDM in visible light communication [J]. Optics express, 2013, 21(23): 27558-27564.

[15] WANG Y G, TAO L, WANG Y Q, et al. High speed WDM VLC system based on multi-band CAP64 with weighted pre-equalization and modified CMMA based post-equalization [J]. IEEE Communication Letters, 2013, 29(2): 2755-2759.

[16] WANG Y, LI R, WANG Y, et al. 3.25 Gbps Visible Light Communication System based on Single Carrier Frequency Domain Equalization Utilizing an RGB LED [C]//Proceedings of the Optical Fiber Communication Conference. Optical Society of America, 2014: Th1F. 1.endprint

[3] CUI K, CHEN G, XU Z, et al. Line-of-sight visible light communication system design and demonstration [C]//Proceedings of the Communication Systems Networks and Digital Signal Processing (CSNDSP), 2010 7th International Symposium on. IEEE, 2010: 621-625.

[4] TANAKA Y, HARUYAMA S, NAKAGAWA M. Wireless optical transmissions with white colored LED for wireless home links [C]//Proceedings of the Personal, Indoor and Mobile Radio Communications, 2000. PIMRC 2000. The 11th IEEE International Symposium on. IEEE, 2000, 2: 1325-1329.

[5] LE M H, OBRIEN D. Faulkner et al. High-speed visible light communications using multiple-resonant equalization [J]. IEEE Photon. Technol. Lett. 2008, 20(14): 1243-1245.

[6] LE M H, OBRIEN D, FAULKNER G, et al. 80 Mb/s visible light communications using pre-equalized white LED [C]//Proceedings of the ECOC 2008, 2008: 6.09.

[7] VUCIC J, KOTTKE C, NERRETER S, et al. 513 Mb/s visible light communications link based on DMT-modulation of a white LED [J]. Lightw. Technol. 2010, 28(24): 3512-3518.

[8] CHI N, WANG Y Q, WANG Y G, et al. Ultra-high-speed single red-green-blue light-emitting diode-based visible light communication system utilizing advanced modulation formats [J]. Chinese Opt. Lett. 2014, 12(1):10605.

[9] KHALID A M, COSSU G, CORSINI R, et al. 1 Gb/s Transmission Over a Phosphorescent White LED by Using Rate-Adaptive Discrete Multitone Modulation [J]. IEEE Photon. J. 2012, 4(5): 1465-1473.

[10] COSSU G, KHALID A M, CHOUDHURY P, et al. 3.4 Gb/s visible optical wireless transmission based on RGB LED [J]. Opt. Express, 2012, 20(26): B501-B506.

[11] WANG Y Q, YANG C, WANG Y G, et al. Gigabit polarization division multiplexing in visible light communication [J]. Optics Letters, 2014, 39(7): 1823-1826.

[12] FUJIMOTO N, MOCHIZUKI H. 477 Mb/s visible light transmission based on OOK-NRZ modulation using a single commercially available visible LED and a practical LED driver with a pre-emphasis circuit [C]//Proceedings of the National Fiber Optic Engineers Conference. Optical Society of America, 2013: JTh2A. 73.

[13] LI H, CHEN X, HUANG B, et al. High Bandwidth Visible Light Communications Based on a Post-Equalization Circuit [J]. IEEE Photon. Technol. Lett., 2014, 26(2): 119-122.

[14] WANG Y, CHI N, WANG Y, et al. High-speed quasi-balanced detection OFDM in visible light communication [J]. Optics express, 2013, 21(23): 27558-27564.

[15] WANG Y G, TAO L, WANG Y Q, et al. High speed WDM VLC system based on multi-band CAP64 with weighted pre-equalization and modified CMMA based post-equalization [J]. IEEE Communication Letters, 2013, 29(2): 2755-2759.

[16] WANG Y, LI R, WANG Y, et al. 3.25 Gbps Visible Light Communication System based on Single Carrier Frequency Domain Equalization Utilizing an RGB LED [C]//Proceedings of the Optical Fiber Communication Conference. Optical Society of America, 2014: Th1F. 1.endprint

[3] CUI K, CHEN G, XU Z, et al. Line-of-sight visible light communication system design and demonstration [C]//Proceedings of the Communication Systems Networks and Digital Signal Processing (CSNDSP), 2010 7th International Symposium on. IEEE, 2010: 621-625.

[4] TANAKA Y, HARUYAMA S, NAKAGAWA M. Wireless optical transmissions with white colored LED for wireless home links [C]//Proceedings of the Personal, Indoor and Mobile Radio Communications, 2000. PIMRC 2000. The 11th IEEE International Symposium on. IEEE, 2000, 2: 1325-1329.

[5] LE M H, OBRIEN D. Faulkner et al. High-speed visible light communications using multiple-resonant equalization [J]. IEEE Photon. Technol. Lett. 2008, 20(14): 1243-1245.

[6] LE M H, OBRIEN D, FAULKNER G, et al. 80 Mb/s visible light communications using pre-equalized white LED [C]//Proceedings of the ECOC 2008, 2008: 6.09.

[7] VUCIC J, KOTTKE C, NERRETER S, et al. 513 Mb/s visible light communications link based on DMT-modulation of a white LED [J]. Lightw. Technol. 2010, 28(24): 3512-3518.

[8] CHI N, WANG Y Q, WANG Y G, et al. Ultra-high-speed single red-green-blue light-emitting diode-based visible light communication system utilizing advanced modulation formats [J]. Chinese Opt. Lett. 2014, 12(1):10605.

[9] KHALID A M, COSSU G, CORSINI R, et al. 1 Gb/s Transmission Over a Phosphorescent White LED by Using Rate-Adaptive Discrete Multitone Modulation [J]. IEEE Photon. J. 2012, 4(5): 1465-1473.

[10] COSSU G, KHALID A M, CHOUDHURY P, et al. 3.4 Gb/s visible optical wireless transmission based on RGB LED [J]. Opt. Express, 2012, 20(26): B501-B506.

[11] WANG Y Q, YANG C, WANG Y G, et al. Gigabit polarization division multiplexing in visible light communication [J]. Optics Letters, 2014, 39(7): 1823-1826.

[12] FUJIMOTO N, MOCHIZUKI H. 477 Mb/s visible light transmission based on OOK-NRZ modulation using a single commercially available visible LED and a practical LED driver with a pre-emphasis circuit [C]//Proceedings of the National Fiber Optic Engineers Conference. Optical Society of America, 2013: JTh2A. 73.

[13] LI H, CHEN X, HUANG B, et al. High Bandwidth Visible Light Communications Based on a Post-Equalization Circuit [J]. IEEE Photon. Technol. Lett., 2014, 26(2): 119-122.

[14] WANG Y, CHI N, WANG Y, et al. High-speed quasi-balanced detection OFDM in visible light communication [J]. Optics express, 2013, 21(23): 27558-27564.

[15] WANG Y G, TAO L, WANG Y Q, et al. High speed WDM VLC system based on multi-band CAP64 with weighted pre-equalization and modified CMMA based post-equalization [J]. IEEE Communication Letters, 2013, 29(2): 2755-2759.

[16] WANG Y, LI R, WANG Y, et al. 3.25 Gbps Visible Light Communication System based on Single Carrier Frequency Domain Equalization Utilizing an RGB LED [C]//Proceedings of the Optical Fiber Communication Conference. Optical Society of America, 2014: Th1F. 1.endprint

主站蜘蛛池模板: 91久久国产综合精品| 日韩精品无码免费专网站| 欧美日本激情| 在线观看视频一区二区| 国产午夜福利在线小视频| 国产成人亚洲无码淙合青草| 久久精品91麻豆| 国产极品美女在线播放| 国产簧片免费在线播放| 亚洲熟女中文字幕男人总站 | 波多野结衣二区| 久久香蕉欧美精品| 国产极品美女在线观看| 999国内精品久久免费视频| 亚洲黄网在线| 亚洲欧美在线综合一区二区三区| 69综合网| 国产精品成人一区二区不卡 | 免费可以看的无遮挡av无码| 波多野结衣一级毛片| www欧美在线观看| 一本二本三本不卡无码| 亚洲欧美日韩成人在线| 欧美亚洲日韩不卡在线在线观看| 精品国产一二三区| 99在线视频精品| 免费一级大毛片a一观看不卡| 欧美国产精品不卡在线观看| 亚洲综合色婷婷| 69av在线| 亚洲国产欧美国产综合久久 | 国产成人乱无码视频| 3D动漫精品啪啪一区二区下载| 亚洲精品视频免费| 国产美女自慰在线观看| 亚洲天堂在线免费| 啪啪国产视频| 中国一级特黄大片在线观看| 欧洲高清无码在线| 欧美亚洲国产日韩电影在线| 毛片免费试看| 日韩国产亚洲一区二区在线观看| 麻豆精品久久久久久久99蜜桃| 自拍偷拍欧美日韩| 亚洲综合片| 最新日韩AV网址在线观看| 国产欧美精品一区二区| 日韩在线视频网| 91香蕉视频下载网站| 毛片手机在线看| 精品一区二区三区水蜜桃| 国产一级毛片yw| 精品国产成人a在线观看| 免费一级成人毛片| 日本日韩欧美| 国产爽妇精品| 2020极品精品国产| v天堂中文在线| 91精品最新国内在线播放| 玩两个丰满老熟女久久网| 亚洲精品欧美重口| 欧美黄色a| 另类重口100页在线播放| 97超碰精品成人国产| 美女被操黄色视频网站| 亚洲男人在线天堂| 国产成人综合网| 亚洲国产精品无码AV| 国产三级精品三级在线观看| 亚洲色图综合在线| 亚洲精品卡2卡3卡4卡5卡区| 黄色片中文字幕| 香蕉综合在线视频91| 白浆视频在线观看| 久久人妻系列无码一区| 国产尤物jk自慰制服喷水| 色婷婷久久| 国产精品视频a| 国产尤物jk自慰制服喷水| a级毛片免费看| 久久青草热| 国产激情无码一区二区免费|