999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

定量蛋白質組學質譜采集技術進展

2014-12-18 21:24:52張偉
分析化學 2014年12期
關鍵詞:綜述

張偉

摘 要 質譜是定量蛋白組學的主要工具。近年來隨著定量蛋白質組學研究的深入,傳統質譜定量技術面臨著復雜基質干擾、分析通量限制等諸多問題。而最近一系列質譜新技術的發展,包括同步母離子選擇(SPS)、質量虧損標記、平行反應監測(PRM)、多重累積(MSX)和多種全新數據非依賴性采集(DIA)等,為解決目前蛋白質組學在相對定量和絕對定量分析方面的局限提供了有效途徑。本文對定量蛋白質組學目前遇到的瓶頸問題進行了分析,總結了質譜定量采集技術的最新進展,并評述了這些新技術的特點以及在定量蛋白質組學應用中的優勢。

[KH*3/4D][HTH]關鍵詞 [HTSS]定量蛋白質組學; 同步母離子選擇; 平行反應監測; 數據非依賴性采集; 綜述

[HT][HK][FQ(32,X,DY-W] [CD15] 20140910收稿; 20141018接受

* Email: wei.zhang@thermofisher.com [HT]

1 引 言

當今蛋白質組學的關注焦點和研究趨勢已經逐漸從定性分析 轉向定量分析。定量蛋白質組學是對細胞、組織乃至完整生物體的蛋白質表達進行定量分析,對生物過程機理的探索和臨床診斷標志物的發現與驗證具有重要意義[ 1,2]。定量蛋白質組學分為相對定量與絕對定量[ 3]。相對定量即差異比較,通過質譜大規模、高通量地對兩種或多種不同生理、病理條件下的樣本進行定量分析,獲得蛋白質表達量的精確差異, 主要方法有穩定同位素標記和非標記兩種技術手段[ 4,5]。絕對定量即獲得蛋白的具體表達量,利用質譜監測目標蛋白的專一性肽段(Unique Peptide)獲得色譜質譜峰面積,并與已知量的標準肽段(外標法)或穩定同位素標記的重標肽段(內標法)比較確定具體量,實現絕對定量。主要質譜方法是對專一性肽段進行選擇反應監測或稱多反應監測(Selected/Multiple reaction monitoring, SRM/MRM)[ 6]。

穩定同位素標記技術是蛋白質組學相對定量的經典方法。樣本在穩定同位素標記后、質譜分析前混合,一次分析實現差異定量,有效消除了色譜和質譜分離分析過程中的不穩定性,最大程度減小了定量誤差。常見方法有基于代謝標記的SILAC[ 7]、基于酶解標記的18O標記[ 8]和基于化學標記的二甲基化[ 9]等,這些方法通過一級母離子提取峰面積實現定量比較。但是,一級定量具有標記通量低、動態范圍差、靈敏度不高等不足,因此, 近年來,基于同重同位素標記的二級定量方法使用越來越廣泛[ 10]。利用同重同位素標簽標記肽段,在一級質譜不同樣本的肽段分子量沒有區分,相互疊加,提高了靈敏度; 二級碎裂獲得分子量不同的報告離子,在b/y離子定性的同時,通過報告離子之間的強度差異實現定量,提高了動態范圍。同重同位素主要標記試劑有iTRAQ[ 11]和TMT[ 12],標簽容量分別達到了8標和6標。然而,同重同位素標記技術面臨共洗脫肽段干擾的問題。蛋白質組學樣本非常復雜,在色譜上存在大量共洗脫肽段,而質譜在選擇母離子進行二級分析時,選擇窗口通常在m/z 2左右,分子量接近的共洗脫肽段被同時選擇,碎裂出的報告離子與目標肽段報告離子疊加,降低了定量比例的準確性[ 13,14]。Ting等[ 15]研究證明,在復雜樣本中,共洗脫肽段嚴重干擾了報告離子的強度,造成肽段和蛋白的定量比例低于真實比例,產生“低估效應”。這一問題已成為同重同位素標記定量技術的瓶頸。

基于三重四極桿的SRM(或稱MRM)是質譜定量的金標準,在蛋白質絕對定量中也廣泛使用[ 6]。SRM根據專一性肽段的母離子質量和子離子質量,第一級質量分析器(Q1)篩選母離子,進入碰撞池碎裂后,第二級質量分析器(Q3)再篩選子離子,最大程度地去除干擾離子,監測母離子子離子形成的離子對的信號響應。通過外標法,利用已知量的標準肽段繪制標準曲線; 或內標法,直接加入已知量的同位素重標肽段同時監測,從而實現定性確證和定量檢測[ 6,16]。SRM靈敏度高、線性范圍廣,是目標蛋白驗證和絕對定量的有效手段。然而,隨著定量蛋白質組學的深入發展,樣本基質越來越復雜、目標蛋白豐度越來越低,容易受到高豐度蛋白的掩蓋。而SRM由于質量分辨率低,難以有效去除復雜基質背景的干擾,易造成假陽性[ 17,18]。另一方面,隨著分析通量的要求越來越高,一次分析可能需要監測成千上萬個離子對,而SRM速度和靈敏度的局限使得能同時監測的離子對數量有限[ 19]; 此外,離子對、碰撞能量等條件的優化也費時費力,難以滿足目標蛋白質組學高通量發展的需要,特別是大樣本量的生物標志物和系統生物學研究[ 20,21]。因此,蛋白質絕對定量同樣面臨著較大的技術挑戰。

近兩年來,隨著以Orbitrap為代表的高分辨質譜硬件技術不斷進步、采集方法不斷創新,定量蛋白質組學遇到的諸多瓶頸正逐步得到解決。這些技術包括基于同重同位素標記技術的同步母離子選擇和質量虧損標記,相對于傳統SRM掃描的高分辨平行反應監測和多重累積平行反應監測,以及多種全新數據非依賴性采集技術。

References

1 Ong S E, Mann M. Nat. Chem. Biol., 2005, 1(5): 252-262

2 Veenstra T D. J. Chromatogr. B, 2007, 847(1): 3-11

3 ZHOU Yuan, SHAN YiChu, ZHANG LiHua, ZHANG YuKui. Chinese Journal of Chromatography, 2013, 31(6): 496-502

周 愿, 單亦初, 張麗華, 張玉奎. 色譜, 2013, 31(6): 496-502

4 Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B. Anal. Bioanal. Chem., 2007, 389(4): 1017-1031

5 ZHU JinLei, ZHANG Kai, HE XiWen, ZHANG YuKui. Chinese J. Anal. Chem., 2010, 38(3): 434-441

朱金蕾, 張 鍇, 何錫文, 張玉奎. 分析化學, 2010, 38(3): 434-441

6 Lange V, Picotti P, Domon B, Aebersold R. Mol. Syst. Biol., 2008, 4: 222

7 Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M. Mol. Cell. Proteomics, 2002, 1(5): 376-386

8 Capelo J L, Carreira R J, Fernandes L, Lodeiro C, Santos H M, SimalGandara J. Talanta, 2010, 80(4): 1476-1486

9 Boersema P J, Raijmakers R, Lemeer S, Mohammed S, Heck A J. Nat. Protoc., 2009, 4(4): 484-494

10 Koehler C J, Strozynski M, Kozielski F, Treumann A, Thiede B. J. Proteome Res., 2009, 8(9): 4333-4341

11 Thompson A, Schafer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Johnstone R, Mohammed A K, Hamon C. Anal. Chem., 2003, 75(8): 1895-1904

12 Ross PL, Huang Y N, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, BartletJones M, He F, Jacobson A, Pappin DJ. Mol. Cell. Proteomics, 2004, 3(12): 1154-1169

13 Karp N A, Huber W, Sadowski P G, Charles P D, Hester S V, Lilley K S. Mol. Cell. Proteomics, 2010, 9(9): 1885-1897

14 Ow S Y, Salim M, Noirel J, Evans C, Rehman I, Wright P C. J. Proteome Res., 2009, 8(11): 5347-5355

15 Ting L, Rad R, Gygi S P, Haas W. Nat. Methods, 2011, 8(11): 937-940

16 ZHAO Yan, YING WanTao, QIAN XiaoHong. Chem. Life, 2008, 28(2): 210-213

趙 焱, 應萬濤, 錢小紅. 生命的化學, 2008, 28(2): 210-213

17 Sherman J, McKay MJ, Ashman K, Molloy MP. Proteomics, 2009, 9(5): 1120-1123

18 Abbatiello SE, Mani DR, Keshishian H, Carr SA. Clin. Chem., 2010, 56(2): 291-305

19 Kiyonami R, Schoen A, Prakash A, Peterman S, Zabrouskov V, Picotti P, Aebersold R, Huhmer A, Domon B. Mol. Cell. Proteomics, 2011, 10(2): M110.002931

20 Cima I, Schiess R, Wild P, Kaelin M, Schüffler P, Lange V, Picotti P, Ossola R, Templeton A, Schubert O, Fuchs T, Leippold T, Wyler S, Zehetner J, Jochum W, Buhmann J, Cerny T, Moch H, Gillessen S, Aebersold R, Krek W. Proc. Natl. Acad. Sci. USA, 2011, 108(8): 3342-3347

21 Picotti P, Bodenmiller B, Mueller L N, Domon B, Aebersold R. Cell, 2009, 138(4): 795-806

22 Pichler P, Kocher T, Holzmann J, Mazanek M, Taus T, Ammerer G, Mechtler K. Anal. Chem., 2010, 82(15): 6549-6558

23 Thingholm T E, Palmisano G, Kjeldsen F, Larsen M R. J. Proteome Res., 2010, 9(8): 4045-4052

24 McAlister G C, Nusinow D P, Jedrychowski M P, Wühr M, Huttlin E L, Erickson B K, Rad R, Haas W, Gygi S P. Anal. Chem., 2014, 86(14): 7150-7158

25 Wuhr M, Haas W, McAlister G C, Peshkin L, Rad R, Kirschner M W, Gygi S P. Anal. Chem., 2012, 84(21): 9214-9221

26 Wenger C D, Lee M V, Hebert A S, McAlister G C, Phanstiel D H, Westphall M S, Coon J J. Nat. Methods, 2011, 8(11): 933-935

27 Goeringer D E, Asano K G, McLuckey S A. Anal. Chem., 1994, 66(3): 313-318

28 Viner R, Bomgarden R, Blank M, Rogers J. 61st ASMS, 2013, Poster W617

29 Blank M, Bomgarden R, Rogers J, Jacobs R, Fong J, Puri N, Zabrouskov V, Viner R. 61st ASMS, 2013, Poster Th449

30 Weekes M P, Tomasec P, Huttlin E L, Fielding C A, Nusinow D, Stanton R J, Wang E C, Aicheler R, Murrell I, Wilkinson G W, Lehner P J, Gygi S P. Cell, 2014, 157(6): 1460-1472

31 Dephoure N, Gygi S P. Sci. Signal, 2012, 5(217): rs2

32 Werner T, Becher I, Sweetman G, Doce C, Savitski M M, Bantscheff M. Anal. Chem., 2012, 84(16): 7188-7194

33 McAlister G C, Huttlin E L, Haas W, Ting L, Jedrychowski M P, Rogers J C, Kuhn K, Pike I, Grothe R A, Blethrow J D, Gygi S P. Anal. Chem., 2012, 84(17): 7469-7478

34 Werner T, Sweetman G, Savitski MF, Mathieson T, Bantscheff M, Savitski M M. Anal. Chem., 2014, 86(7): 3594-3601

35 Gallien S, Duriez E, Demeure K, Domon B. J. Proteomics, 2013, 9(81): 148-158

36 Karlsson C, Malmstrom L, Aebersold R, Malmstrom J. Nat. Commun., 2012, 3: 1301

37 GallartAyala H, Moyano E, Galceran M T. J. Chromatogr. A, 2008, 1208(12): 182-188

38 MartínezVillalba A, Moyano E, Martins C P, Galceran M T. Anal. Bioanal. Chem., 2010, 397(7): 2893-2901

39 Fortin T, Salvador A, Charrier J P, Lenz C, Bettsworth F, Lacoux X, ChoquetKastylevsky G, Lemoine J. Anal. Chem., 2009, 81(22): 9343-9352

40 Peterson A C, Russell J D, Bailey D J, Westphall M S, Coon J J. Mol. Cell. Proteomics, 2012, 11(11): 1475-1488

41 Schiffmann C, Hansen R, Baumann S, Kublik A, Nielsen P H, Adrian L, von Bergen M, Jehmlich N, Seifert J. Anal. Bioanal. Chem., 2014, 406(1): 283-291

42 Gallien S, Duriez E, Demeure K, Domon B. J. Proteomics, 2013, 81: 148-158

43 Tsuchiya H, Tanaka K, Saeki Y. Biochem. Biophys. Res. Commun., 2013, 436(2): 223-229

44 Tang H, Fang H, Yin E, Brasier A R, Sowers L C, Zhang K. Anal. Chem., 2014, 86(11): 5526-5534

45 Gallien S, Bourmaud A, Kim S Y, Domon B. J. Proteomics, 2014, 100: 147-159

46 Gallien S, Duriez E, Crone C, Kellmann M, Moehring T, Domon B. Mol. Cell. Proteomics, 2012, 11(12): 1709-1723

47 Law K P, Lim Y P. Expert. Rev. Proteomics, 2013, 10(6): 551-566

48 Venable J D, Dong M Q, Wohlschlegel J, Dillin A, Yates J R. Nat. Methods, 2004, 1(1): 39-45

49 Gillet L C, Navarro P, Tate S, Rost H, Selevsek N, Reiter L, Bonner R, Aebersold R. Mol. Cell. Proteomics, 2012, 11(6): O111.016717

50 Liu Y, Huttenhain R, Surinova S, Gillet L C, Mouritsen J, Brunner R, Navarro P, Aebersold R. Proteomics, 2013, 13(8): 1247-1256

51 Collins B C, Gillet L C, Rosenberger G, Rost H L, Vichalkovski A, Gstaiger M, Aebersold R. Nat. Methods, 2013, 10(12): 1246-1253

52 Lambert J P, Ivosev G, Couzens A L, Larsen B, Taipale M, Lin Z Y, Zhong Q, Lindquist S, Vidal M, Aebersold R, Pawson T, Bonner R, Tate S, Gingras A C. Nat. Methods, 2013, 10(12): 1239-1245

53 Chapman J D, Goodlett D R, Masselon C D. Mass Spectrom. Rev., 2013: 10.1002/mas.21400

54 Egertson J D, Kuehn A, Merrihew G E, Bateman N W, MacLean B X, Ting Y S, Canterbury J D, Marsh D M, Kellmann M, Zabrouskov V, Wu C C, MacCoss M J. Nat. Methods, 2013, 10(8): 744-746

55 Senko M W, Remes P M, Canterbury J D, Mathur R, Song Q, Eliuk S M, Mullen C, Earley L, Hardman M, Blethrow JD, Bui H, Specht A, Lange O, Denisov E, Makarov A, Horning S, Zabrouskov V. Anal. Chem., 2013, 85(24): 11710-11714

56 Kiyonami R, Patel B, Senko M, Zabrouskov V, Egertson J, Ting S, MacCoss M, Rogers J, Huhmer A. Large Scale Targeted Protein Quantification Using WiSIMDIA Workflow on a Orbitrap Fusion Tribrid Mass Spectrometer. ASMS, 2014, W737

57 ZHANG Wei, Reiko Kiyonami, JIANG Zheng, CHEN Wei. Chinese J. Anal. Chem., 2014, 42(12): 1750-1758

張 偉, Reiko Kiyonami, 江 崢, 陳 偉. 分析化學, 2014, 42(12): 1750-1758

58 Prakash A, Peterman S, Ahmad S, Sarracino D, Frewen B, Vogelsang M, Byram G, Krastins B, Vadali G, Lopez M. J. Proteome Res., 2014, doi: 10.1021/pr5003017

Progress in Mass Spectrometry Acquisition Approach for

Quantitative Proteomics

ZHANG Wei*

(Thermo Fisher Scientific, Shanghai 201206, China)

Abstract Mass spectrometry is an important and powerful tool for protein quantification. With the indepth development of quantitative proteomics, limitations of classic MS based quantification methods, such as complicated matrix interference and throughput/capacity limitation, start to appear. Recent progress of series novel MS based techniques provide effective solutions for the limitations of relative and absolute proteomic quantification, including synchronous precursor selection (SPS), mass defect isobaric labeling, parallel reaction monitoring (PRM), multiplexing acquisition (MSX), and various novel data independent acquisition (DIA) modes. Here we summarized the current limitations of quantitative proteomics, reviewed the latest MS based quantification approaches, and discussed the features and advantages of these novel techniques for quantitative proteomic application.

Keywords Quantitative proteomics; Synchronous precursor selection; Parallel reaction monitoring; Data independent acquisition; Review

(Received 10 September 2014; accepted 18 October 2014)

46 Gallien S, Duriez E, Crone C, Kellmann M, Moehring T, Domon B. Mol. Cell. Proteomics, 2012, 11(12): 1709-1723

47 Law K P, Lim Y P. Expert. Rev. Proteomics, 2013, 10(6): 551-566

48 Venable J D, Dong M Q, Wohlschlegel J, Dillin A, Yates J R. Nat. Methods, 2004, 1(1): 39-45

49 Gillet L C, Navarro P, Tate S, Rost H, Selevsek N, Reiter L, Bonner R, Aebersold R. Mol. Cell. Proteomics, 2012, 11(6): O111.016717

50 Liu Y, Huttenhain R, Surinova S, Gillet L C, Mouritsen J, Brunner R, Navarro P, Aebersold R. Proteomics, 2013, 13(8): 1247-1256

51 Collins B C, Gillet L C, Rosenberger G, Rost H L, Vichalkovski A, Gstaiger M, Aebersold R. Nat. Methods, 2013, 10(12): 1246-1253

52 Lambert J P, Ivosev G, Couzens A L, Larsen B, Taipale M, Lin Z Y, Zhong Q, Lindquist S, Vidal M, Aebersold R, Pawson T, Bonner R, Tate S, Gingras A C. Nat. Methods, 2013, 10(12): 1239-1245

53 Chapman J D, Goodlett D R, Masselon C D. Mass Spectrom. Rev., 2013: 10.1002/mas.21400

54 Egertson J D, Kuehn A, Merrihew G E, Bateman N W, MacLean B X, Ting Y S, Canterbury J D, Marsh D M, Kellmann M, Zabrouskov V, Wu C C, MacCoss M J. Nat. Methods, 2013, 10(8): 744-746

55 Senko M W, Remes P M, Canterbury J D, Mathur R, Song Q, Eliuk S M, Mullen C, Earley L, Hardman M, Blethrow JD, Bui H, Specht A, Lange O, Denisov E, Makarov A, Horning S, Zabrouskov V. Anal. Chem., 2013, 85(24): 11710-11714

56 Kiyonami R, Patel B, Senko M, Zabrouskov V, Egertson J, Ting S, MacCoss M, Rogers J, Huhmer A. Large Scale Targeted Protein Quantification Using WiSIMDIA Workflow on a Orbitrap Fusion Tribrid Mass Spectrometer. ASMS, 2014, W737

57 ZHANG Wei, Reiko Kiyonami, JIANG Zheng, CHEN Wei. Chinese J. Anal. Chem., 2014, 42(12): 1750-1758

張 偉, Reiko Kiyonami, 江 崢, 陳 偉. 分析化學, 2014, 42(12): 1750-1758

58 Prakash A, Peterman S, Ahmad S, Sarracino D, Frewen B, Vogelsang M, Byram G, Krastins B, Vadali G, Lopez M. J. Proteome Res., 2014, doi: 10.1021/pr5003017

Progress in Mass Spectrometry Acquisition Approach for

Quantitative Proteomics

ZHANG Wei*

(Thermo Fisher Scientific, Shanghai 201206, China)

Abstract Mass spectrometry is an important and powerful tool for protein quantification. With the indepth development of quantitative proteomics, limitations of classic MS based quantification methods, such as complicated matrix interference and throughput/capacity limitation, start to appear. Recent progress of series novel MS based techniques provide effective solutions for the limitations of relative and absolute proteomic quantification, including synchronous precursor selection (SPS), mass defect isobaric labeling, parallel reaction monitoring (PRM), multiplexing acquisition (MSX), and various novel data independent acquisition (DIA) modes. Here we summarized the current limitations of quantitative proteomics, reviewed the latest MS based quantification approaches, and discussed the features and advantages of these novel techniques for quantitative proteomic application.

Keywords Quantitative proteomics; Synchronous precursor selection; Parallel reaction monitoring; Data independent acquisition; Review

(Received 10 September 2014; accepted 18 October 2014)

46 Gallien S, Duriez E, Crone C, Kellmann M, Moehring T, Domon B. Mol. Cell. Proteomics, 2012, 11(12): 1709-1723

47 Law K P, Lim Y P. Expert. Rev. Proteomics, 2013, 10(6): 551-566

48 Venable J D, Dong M Q, Wohlschlegel J, Dillin A, Yates J R. Nat. Methods, 2004, 1(1): 39-45

49 Gillet L C, Navarro P, Tate S, Rost H, Selevsek N, Reiter L, Bonner R, Aebersold R. Mol. Cell. Proteomics, 2012, 11(6): O111.016717

50 Liu Y, Huttenhain R, Surinova S, Gillet L C, Mouritsen J, Brunner R, Navarro P, Aebersold R. Proteomics, 2013, 13(8): 1247-1256

51 Collins B C, Gillet L C, Rosenberger G, Rost H L, Vichalkovski A, Gstaiger M, Aebersold R. Nat. Methods, 2013, 10(12): 1246-1253

52 Lambert J P, Ivosev G, Couzens A L, Larsen B, Taipale M, Lin Z Y, Zhong Q, Lindquist S, Vidal M, Aebersold R, Pawson T, Bonner R, Tate S, Gingras A C. Nat. Methods, 2013, 10(12): 1239-1245

53 Chapman J D, Goodlett D R, Masselon C D. Mass Spectrom. Rev., 2013: 10.1002/mas.21400

54 Egertson J D, Kuehn A, Merrihew G E, Bateman N W, MacLean B X, Ting Y S, Canterbury J D, Marsh D M, Kellmann M, Zabrouskov V, Wu C C, MacCoss M J. Nat. Methods, 2013, 10(8): 744-746

55 Senko M W, Remes P M, Canterbury J D, Mathur R, Song Q, Eliuk S M, Mullen C, Earley L, Hardman M, Blethrow JD, Bui H, Specht A, Lange O, Denisov E, Makarov A, Horning S, Zabrouskov V. Anal. Chem., 2013, 85(24): 11710-11714

56 Kiyonami R, Patel B, Senko M, Zabrouskov V, Egertson J, Ting S, MacCoss M, Rogers J, Huhmer A. Large Scale Targeted Protein Quantification Using WiSIMDIA Workflow on a Orbitrap Fusion Tribrid Mass Spectrometer. ASMS, 2014, W737

57 ZHANG Wei, Reiko Kiyonami, JIANG Zheng, CHEN Wei. Chinese J. Anal. Chem., 2014, 42(12): 1750-1758

張 偉, Reiko Kiyonami, 江 崢, 陳 偉. 分析化學, 2014, 42(12): 1750-1758

58 Prakash A, Peterman S, Ahmad S, Sarracino D, Frewen B, Vogelsang M, Byram G, Krastins B, Vadali G, Lopez M. J. Proteome Res., 2014, doi: 10.1021/pr5003017

Progress in Mass Spectrometry Acquisition Approach for

Quantitative Proteomics

ZHANG Wei*

(Thermo Fisher Scientific, Shanghai 201206, China)

Abstract Mass spectrometry is an important and powerful tool for protein quantification. With the indepth development of quantitative proteomics, limitations of classic MS based quantification methods, such as complicated matrix interference and throughput/capacity limitation, start to appear. Recent progress of series novel MS based techniques provide effective solutions for the limitations of relative and absolute proteomic quantification, including synchronous precursor selection (SPS), mass defect isobaric labeling, parallel reaction monitoring (PRM), multiplexing acquisition (MSX), and various novel data independent acquisition (DIA) modes. Here we summarized the current limitations of quantitative proteomics, reviewed the latest MS based quantification approaches, and discussed the features and advantages of these novel techniques for quantitative proteomic application.

Keywords Quantitative proteomics; Synchronous precursor selection; Parallel reaction monitoring; Data independent acquisition; Review

(Received 10 September 2014; accepted 18 October 2014)

猜你喜歡
綜述
2021年國內批評話語分析研究綜述
認知需要研究綜述
氫能有軌電車應用綜述
高速磁浮車載運行控制系統綜述
5G應用及發展綜述
電子制作(2019年10期)2019-06-17 11:45:16
SEBS改性瀝青綜述
石油瀝青(2018年6期)2018-12-29 12:07:04
NBA新賽季綜述
NBA特刊(2018年21期)2018-11-24 02:47:52
深度學習認知計算綜述
JOURNAL OF FUNCTIONAL POLYMERS
Progress of DNA-based Methods for Species Identification
法醫學雜志(2015年2期)2015-04-17 09:58:45
主站蜘蛛池模板: 久久久久久午夜精品| 尤物精品视频一区二区三区| 青青青国产在线播放| 国产网站免费看| 欧美一级99在线观看国产| 国内精品九九久久久精品| 国产91久久久久久| 亚洲成综合人影院在院播放| 深爱婷婷激情网| 大陆国产精品视频| 91系列在线观看| 欧美视频在线播放观看免费福利资源| 91精品久久久久久无码人妻| 91视频首页| 91丝袜乱伦| 亚洲视频欧美不卡| 久久中文字幕不卡一二区| 91网站国产| 毛片最新网址| 四虎综合网| 一区二区影院| 91福利国产成人精品导航| 亚洲精品桃花岛av在线| 欧美一级爱操视频| 色一情一乱一伦一区二区三区小说| 亚洲精品无码抽插日韩| 亚洲无码免费黄色网址| 国产色爱av资源综合区| 国产在线日本| 亚洲视频二| 国产噜噜噜| 成人午夜视频网站| 97视频精品全国免费观看| 在线亚洲精品福利网址导航| 久久综合结合久久狠狠狠97色| 国产小视频网站| 国产无码制服丝袜| 中文一级毛片| 亚洲成人网在线观看| 中文字幕在线播放不卡| 欧美亚洲国产精品第一页| 一本大道在线一本久道| 青青青视频91在线 | 成人精品视频一区二区在线 | 欧美色亚洲| 国产精品无码AV片在线观看播放| 免费人成又黄又爽的视频网站| 国产极品美女在线播放| 91福利在线看| 99爱视频精品免视看| 91高清在线视频| 欧美精品在线视频观看| 综合五月天网| 国产精品亚洲欧美日韩久久| 精品久久蜜桃| 久久综合丝袜长腿丝袜| 日韩欧美91| 日本不卡在线播放| 亚洲色欲色欲www网| 亚洲成人在线免费| 黄色不卡视频| 99在线观看免费视频| 亚洲大学生视频在线播放| 青青操国产| 精品久久高清| 国产人碰人摸人爱免费视频 | 青青草原国产av福利网站| 亚洲永久精品ww47国产| 亚洲中文久久精品无玛| 秋霞一区二区三区| 久久99久久无码毛片一区二区| 国产精品无码在线看| 国产综合色在线视频播放线视| 欧美午夜小视频| 首页亚洲国产丝袜长腿综合| 国产青榴视频| 久久精品视频一| 亚洲第一视频免费在线| 人妻精品全国免费视频| 久久久久人妻一区精品色奶水| 手机精品视频在线观看免费| 亚洲国产理论片在线播放|