亓法英 王富敏 于繼徐 車峰遠 趙孔波
(山東省臨沂市人民醫院神經內科,*急救中心,山東臨沂 276003)
?
·論著·
G93A突變的hSOD1基因對Nrf2/ARE信號通路的影響
亓法英王富敏于繼徐車峰遠趙孔波*
(山東省臨沂市人民醫院神經內科,*急救中心,山東臨沂276003)
摘要目的: 探討G93A突變的hSOD1 (human Cu/Zn superoxide dismutase) 基因在肌萎縮側索硬化轉基因細胞模型NSC-34細胞中對Nrf2/ARE信號通路的影響。方法:將構建好的質粒hSOD1-pcDNA3.1(-)、hSOD1-G93A-pcDNA3.1(-)和pcDNA3.1(-)轉染至肌萎縮側索硬化轉基因細胞模型NSC-34細胞內,根據轉染質粒的不同分為4組:正常組、空轉組、野生組和突變組。通過檢測細胞內脂質過氧化產物丙二醛(malondialdehyde, MDA)的含量來判斷細胞氧化損傷的程度;檢測線粒體膜通透性;通過Western blotting檢測細胞中Nrf2、抗氧化酶的蛋白表達水平,以反映Nrf2/ARE信號通路在各組的活化程度。結果:轉染hSOD1-G93A-pcDNA3.1(-)的NSC-34細胞(突變組)內氧化應激水平增高,同時線粒體通透性增加,提示線粒體受損傷;且Nrf2以及Nrf2/ARE信號通路下游效應分子血紅素氧合酶-1(heme oxygenase-1, HO-1)和NAD(P)H醌氧化還原酶-1[NAD(P)H: quinone oxidoreductase 1, NQO1]的蛋白表達水平均降低(P<0.05)。突變組細胞胞漿中Nrf2表達明顯減少(P<0.05),而突變組和野生組細胞核中Nrf2增多,突變組細胞更為顯著(P<0.05)。結論:hSOD1基因的G93A突變使細胞Nrf2/ARE信號通路受損,降低了細胞的抗氧化能力,加重了線粒體損傷。
關鍵詞肌萎縮側索硬化;NSC-34細胞;Nrf2/ARE通路
肌萎縮側索硬化(amyotrophic lateral sclerosis, ALS)是一種選擇性侵犯上、下運動神經元的慢性致死性神經系統變性疾病,臨床主要表現為進行性發展的肌肉無力、萎縮、肌束震顫、腱反射亢進和病理征陽性。ALS患者中,90%~95%為散發病例,5%~10%的患者有家族史。目前,ALS的發病機制不明,缺乏有效的治療方法,患者多于發病3~5年后死于呼吸肌麻痹[1-2]。
目前認為,ALS患者的運動神經元進行性丟失是由一系列復雜的相互作用機制所致。這些機制包括氧化應激、谷氨酸興奮性毒性、線粒體功能障礙、細胞骨架異常、蛋白聚集以及遺傳因素等,其中,氧化應激是其主要因素[3]。有研究[4-5]在約20%的家族性ALS患者中發現了銅鋅超氧化物歧化酶(Cu/Zn SOD)的突變;轉染突變的人類SOD1基因的小鼠可以表現出ALS樣癥狀。然而,迄今為止,對于病因已經明確的轉染突變的人類SOD1基因的動物毒性致病機制尚不清楚。近年研究發現,核因子E2相關因子2(nuclear factor erythroid 2-related factor 2, Nrf2)通過與抗氧化反應元件(antioxidant response element, ARE)的相互作用來調節編碼抗氧化酶和抗氧化蛋白(包括醌氧化還原酶1和血紅素氧合酶),這是迄今為止發現的最重要的內源性抗氧化應激通路。有研究[6-7]發現,在不同的組織和器官中,Nrf2/ARE信號通路的激活能夠保護機體或者減少細胞損傷。但是,關于Nrf2/ARE信號通路在ALS運動神經元變性的發病過程中發揮的作用目前仍未完全闡明。
NSC-34細胞模型在國外已經被廣泛應用于ALS的研究[8-9]。本研究應用NSC-34細胞構建的ALS細胞模型,觀察G93A突變的人SOD1基因(human SOD1-G93A, hSOD1-G93A)對NSC-34細胞內源性抗氧化通路Nrf2/ARE信號通路的影響,以探討ALS的發病機制,為ALS治療藥物的篩選和治療提供更多的依據。
1資料與方法
1.1實驗材料
NSC-34細胞系由河北醫科大學第二醫院神經病學實驗室惠贈;分別穩定轉染hSOD1-pcDNA3.1(-)、hSOD1-G93A-pcDNA3.1(-)和pcDNA3.1(-)質粒的NSC-34細胞系為本實驗室前期構建;NAD(P)H醌氧化還原酶-1[NAD(P)H: quinone oxidoreductase 1, NQO1]多克隆抗體、血紅素氧合酶-1(heme oxygenase-1, HO-1)多克隆抗體、核轉錄因子E2相關因子2(nuclear factor E2-related factor 2, Nrf2)多克隆抗體均購自美國Santa Cruz公司;總蛋白提取試劑盒、胞漿/胞核蛋白提取試劑盒購自江蘇省南京凱基生物科技發展有限公司。
1.2方法
1.2.1細胞培養實驗共分為4組:正常NSC-34細胞(正常組)、轉染pcDNA3.1(-)質粒的NSC-34細胞(空轉組);轉染hSOD1-pcDNA3.1(-)質粒的NSC-34細胞(野生組);轉染hSOD1-G93A-pcDNA3.1(-)質粒的NSC-34細胞(突變組),均為本實驗室前期構建。進行細胞培養時,將4種細胞系從液氮中取出,置于37℃水浴箱中迅速融化,然后轉移至25 cm2玻璃培養瓶中,加入5 mL含10%胎牛血清的DMEM完全培養基并混勻,將培養瓶蓋旋至半松狀態,置于37℃、CO2體積分數為5%的培養箱內培養;接種4~6 h后更換培養液,之后每 2~3 更換一次培養液。NSC-34細胞的免疫組化(anti-SIM2抗體,ab94630,英國Abcam公司)圖見圖1。

圖1NSC-34細胞的免疫組化圖片(anti-SIM2染色)
1.2.2細胞丙二醛檢測通過檢測脂質過氧化產物丙二醛(malondialdehyde, MDA)的含量來反應細胞脂質過氧化的水平。在過氧化脂質降解產物中的MDA可與硫代巴比妥酸縮合,形成紅色產物,在532 nm波長處有最大吸收峰。根據MDA檢測試劑盒的說明書操作,在室溫下將各組細胞破碎并與反應液混合,于95℃水浴箱內水浴40 min,然后迅速用流水冷卻。加入96孔板內,測定其在523 nm處的吸光度。
1.2.3蛋白質的提取及濃度測定當細胞融合度達80%~90%時,用預冷的磷酸鹽緩沖液(PBS)洗2次,0.25%胰酶消化,1000 r/min、4℃離心10 min。細胞總蛋白的提取按照總蛋白提取試劑盒說明書進行。細胞漿和細胞核蛋白的提取按照胞漿/胞核蛋白提取試劑盒說明書進行。用Bradford法測定蛋白濃度。
1.2.4Western blotting檢測蛋白水平取60 μg蛋白,用12%的十二烷基硫酸鈉-聚丙烯酰胺凝膠電泳(SDS-PAGE)膠、80 V電泳約30 min,當溴酚藍過了積層膠后,改用100 V電泳至溴酚藍達底部。電轉移至聚偏二氟乙烯膜(polyvinylidene fluoride, PVDF)膜上,參數為300 mA、2 h。經5%脫脂奶粉封閉1 h后,加一抗:鼠來源單克隆β-actin抗體(1∶500)、兔來源多克隆Nrf2抗體(1∶200)、兔來源多克隆HO-1抗體(1∶200)、羊來源多克隆NQO1抗體(1∶200),4℃過夜。次日,用TBST(Tris buffered saline with Tween-20, PH 7.4)洗滌后加相應的熒光二抗(β-actin二抗為1∶10000,其余均為1∶3000),室溫孵育1 h, TBST(PH 7.4)洗滌,加ECL發光液后壓片、曝光。最后用成像儀掃描目的條帶,計算目的蛋白熒光條帶密度與相應β-actin熒光條帶密度的比值。
1.2.5線粒體通透性的檢測采用線粒體膜通透性轉運孔檢測試劑盒mitoprobeTMtransition pore assay kit (美國invitrogen公司)。將1 mmol/L的calcein-AM儲存液稀釋為濃度為2 μmol/L的工作液,即按照1∶500的比例用HBSS/Ca2+溶液稀釋。設置陰性對照組、線粒體攝入calcein-AM的對照組以及背景強陽性對照組。向6孔板培養細胞的培養液內加入2 μmol/L的calcein工作液5 μL,背景強陽性對照組內加入離子霉素(ionomysin)和CoCl2各 5 μL,其余各個組內再加入CoCl25 μL(包括線粒體對照管),37℃孵育15 min,加入HBSS/Ca2+溶液清洗,1 h內完成熒光定量分析。
1.3統計學處理
2結果
2.1hSOD1-G93A-pcDNA3.1(-)過表達可以顯著增加細胞內氧化應激水平統計學分析顯示,轉染hSOD1-G93A-pcDNA3.1(-)質粒的NSC-34細胞(突變組)中MDA的含量明顯高于其他3組細胞(P<0.05);而轉染pcDNA3.1(-)的NSC-34細胞(空轉組)和轉染hSOD1-pcDNA3.1(-)質粒的NSC-34細胞(野生組)與正常的NSC-34細胞(正常組)相比,細胞內MDA的含量沒有明顯差異。見表1。

表1 4組細胞內MDA的含量
注:與正常組、空轉組和野生組比較,*P<0.05
2.2hSOD1-G93A-pcDNA3.1(-)過表達可以明顯增加細胞漿內線粒體膜的通透性在轉染hSOD1-G93A-pcDNA3.1(-)質粒的NSC-34細胞(突變組)中,細胞漿線粒體內calcein熒光強度較正常組、空轉組及野生組顯著下降,提示突變組中線粒體通透性增加(P<0.05)。野生組與空轉組的NSC-34細胞線粒體內Calcein熒光強度與正常組NSC-34細胞相比,均無統計學差異(P>0.05),提示野生組及空轉組中沒有明顯的線粒體通透性改變。見圖2。
2.3hSOD1-G93A-pcDNA3.1(-)過表達可以下調Nrf2以及HO-1、NQO1蛋白的表達水平在轉染hSOD1-G93A-pcDNA3.1(-)質粒的 NSC-34 細胞中,細胞內總Nrf2以及HO-1、NQO1蛋白的表達均低于正常組(P<0.05)。轉染pcDNA3.1(-)質粒和轉染hSOD1-pcDNA3.1(-)質粒的NSC-34細胞與正常NSC-34細胞相比,Nrf2及HO-1、NQO1蛋白的表達無明顯變化(P>0.05)。見圖3。
2.4hSOD1-G93A-pcDNA3.1(-)過表達可以下調胞漿Nrf2的表達水平并增加Nrf2蛋白的核轉位突變組細胞胞漿中Nrf2蛋白的表達與其他3組細胞相比明顯減少(P<0.05),見圖3,而其他3組細胞胞漿中Nrf2的表達差異無統計學意義。野生組和突變組細胞胞核中Nrf2蛋白與其他兩組相比明顯增加,且突變組細胞更為顯著(P<0.05),見圖4。

圖2hSOD1-G93A對線粒體膜通透性的影響

圖3 hSOD1-G93A對Nrf2、HO-1、NQO1蛋白表達的影響

圖4 4組細胞的細胞核與細胞漿內Nrf2蛋白水平的變化
3討論
家族性ALS患者中約20%有SOD1基因突變,把hSOD1-G93A轉染入小鼠中,可以使小鼠出現ALS神經系統樣癥狀。為了研究hSOD1-G93A基因的致病機制,我們應用NSC-34細胞過表達hSOD1-G93A基因,觀察hSOD1-G93A基因過表達對內源性抗氧化應激通路的影響,結果發現,hSOD1-G93A過表達可以顯著增加MDA的水平,提示hSOD1-G93A過表達可以抑制NSC-34細胞的抗氧化和解毒能力。同時,hSOD1-G93A過表達可以使線粒體通透性顯著增加。已有研究[10]表明,線粒體通透性的增加與細胞凋亡的發生有關,線粒體膜通透性的增加可以使線粒體內膜中的凋亡誘導因子(apoptosis induce factor,AIF)、caspase-3等釋放入胞漿并誘導細胞凋亡。本研究發現,在轉染hSOD1-G93A-pcDNA3.1(-)的NSC-34細胞內,抗氧化應激的中樞調節蛋白Nrf2的表達水平明顯低于正常對照組,與之相對應,Nrf2-ARE信號通路下游效應因子HO-1和NQO1的蛋白表達水平也明顯低于正常對照組。在正常狀態下,Nrf2在細胞漿中與其抑制性蛋白Keapl(Kelch-like ECH-associated protein-1)相結合,處于非活性狀態。當細胞發生氧化應激時,在氧自由基等的作用下,Nrf2與Keapl蛋白分離,Nrf2由胞漿轉位到胞核內,通過與核內ARE順式作用元件相結合來上調Ⅱ相解毒酶及抗氧化蛋白(包括HO-1和NQO1)的表達[11-13]。HO-1被認為在內源性抗氧化防御過程中起重要作用,因為在HO-1基因敲除鼠模型中,細胞更易受到氧化應激的損傷[14]。NQO1是一種電子還原酶,它能夠催化醌類及其衍生物發生還原反應,且反應過程中不會產生單電子還原產物半醌及自由基等氧化產物,這有益于抵御機體代謝引起的氧化應激反應。研究[15]表明,破壞Nrf2分子及其下游信號通路會加重細胞內的氧化損傷、炎性反應和線粒體功能障礙。Ⅱ相酶誘導劑可以通過Nrf2/ARE通路上調HO-1的表達,保護神經元免受氧化應激的損傷。以上證據表明,Nrf2/ARE信號通路可以對抗氧化應激,保護神經元。但是,在突變組NSC-34細胞中Nrf2/ARE信號通路受損,Nrf2、HO-1和NQO1的表達下降,因此,突變組NSC-34細胞中氧化應激水平升高,導致細胞損傷。
為了進一步了解Nrf2/ARE信號通路的改變,我們分別檢測了NSC-34細胞漿和細胞核中Nrf2蛋白表達的變化,結果發現,突變組細胞胞漿中Nrf2的表達與其他3組細胞相比明顯減少,而正常組、空轉組和野生組細胞胞漿內Nrf2的表達無明顯差異;野生組和突變組細胞核中Nrf2蛋白與其他兩組相比增加,而且突變組細胞增加更顯著(P<0.05)。以上結果與Mimoto等[16]在ALS動物模型的運動神經元細胞核中發現的Nrf2積聚是一致的。有研究[17-18]在突變的TDP-43轉基因細胞模型中也發現Nrf2核轉移,但是其下游抗氧化酶HO-1表達卻降低。也就是說,當細胞受到氧化應激時,突變組細胞中有更多的Nrf2由胞漿轉移至胞核,但是其下游的抗氧化酶的蛋白表達水平卻是降低的,這也說明基因突變導致Nrf2/ARE信號通路受阻,使得下游效應因子的表達不能相應地增加。
綜上所述,在ALS模型中,hSOD1-G93A基因使細胞Nrf2/ARE信號通路受損,降低了細胞的抗氧化能力。因此,Nrf2/ARE信號通路有潛力成為治療ALS的新靶點。
參考文獻
[1]Mitchell JD, Callagher P, Gardham J, et al. Timelines in the diagnostic evaluation of people with suspected amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND)-a 20-year review: can we do better?[J]. Amyotroph Lateral Scler, 2010,11(6):537-541.
[2]Kingwell K. Amyotrophic lateral sclerosis: Early involvement of grey matter oligodendrocytes in amyotrophic lateral sclerosis[J]. Nat Rev Neurol, 2013,9(5):238.
[3]Kiernan MC, Vucic S, Cheah BC, et al. Amyotrophic lateral sclerosis[J]. Lancet, 2011,377(9769):942-955.
[4]Riva N, Chaabane L, Peviani M, et al. Defining peripheral nervous system dysfunction in the SOD-1G93A transgenic rat model of amyotrophic lateral sclerosis[J]. J Neuropathol Exp Neurol,2014,73(7):658-670.
[5]Poulletier DGF, Ruffie G, Taxile M, et al. Amyotrophic lateral sclerosis (ALS) and extremely-low frequency (ELF) magnetic fields: a study in the SOD-1 transgenic mouse model[J]. Amyotroph Lateral Scler, 2009,10(5-6):370-373.
[6]Vargas MR, Johnson JA. The Nrf2-ARE cytoprotective pathway in astrocytes[J]. Expert Rev Mol Med,2009,11:e17.
[7]Jian Z, Li K, Song P, et al. Impaired activation of the Nrf2-ARE signaling pathway undermines H2O2-induced oxidative stress response: a possible mechanism for melanocyte degeneration in vitiligo[J]. J Invest Dermatol, 2014,134(8):2221-2230.
[8]Rizzardini M, Mangolini A, Lupi M, et al. Low levels of ALS-linked Cu/Zn superoxide dismutase increase the production of reactive oxygen species and cause mitochondrial damage and death in motor neuron-like cells[J]. J Neurol Sci, 2005,232(1-2):95-103.
[9]Gomes C, Keller S, Altevogt P, et al. Evidence for secretion of Cu, Zn superoxide dismutase via exosomes from a cell model of amyotrophic lateral sclerosis[J]. Neurosci Lett, 2007,428(1):43-46.
[10]Smith MA, Schnellmann RG. Calpains, mitochondria, and apoptosis[J]. Cardiovasc Res, 2012,96(1):32-37.
[11]Neymotin A, Calingasan NY, Wille E, et al. Neuroprotective effect of Nrf2/ARE activators, CDDO ethylamide and CDDO trifluoroethylamide, in a mouse model of amyotrophic lateral sclerosis[J]. Free Radic Biol Med, 2011,51(1):88-96.
[12]Ji L, Wei Y, Jiang T, et al. Correlation of Nrf2, NQO1, MRP1, cmyc and p53 in colorectal cancer and their relationships to clinicopathologic features and survival[J]. Int J Clin Exp Pathol, 2014,7(3):1124-1131.
[13]Li L, Dong H, Song E, et al. Nrf2/ARE pathway activation, HO-1 and NQO1 induction by polychlorinated biphenyl quinone is associated with reactive oxygen species and PI3K/AKT signaling[J]. Chem Biol Interact, 2014,209:56-67.
[14]Yu JH, Cho SO, Lim JW, et al. Ataxia telangiectasia mutated inhibits oxidative stress-induced apoptosis by regulating heme oxygenase-1 expression[J]. Int J Biochem Cell Biol, 2015,60C:147-156.
[15]Slocum SL, Kensler TW. Nrf2: control of sensitivity to carcinogens[J]. Arch Toxicol, 2011,85(4):273-284.
[16]Mimoto T, Miyazaki K, Morimoto N, et al. Impaired antioxydative Keap1/Nrf2 system and the downstream stress protein responses in the motor neuron of ALS model mice[J]. Brain Res, 2012,1446:109-118.
[17]Duan W, Guo Y, Xiao J, et al. Neuroprotection by monocarbonyl dimethoxycurcumin C: ameliorating the toxicity of mutant TDP-43 via HO-1[J]. Mol Neurobiol, 2014,49(1):368-379.
[18]Guo Y, Wang Q, Zhang K, et al. HO-1 induction in motor cortex and intestinal dysfunction in TDP-43 A315T transgenic mice[J]. Brain Res,2012,1460:88-95.
基本項目:國家重點臨床專科建設項目(編號:財社[2010]305號)
Influences of hSOD1 Gene with G93A Mutation on Nrf2/ARE Signaling Pathway
QIFayingWANGFuminYUJixuCHEFengyuanZHAOKongbo*DepartmentofNeurology,*EmergencyCenter,LinyiPeople′sHospital,Linyi276003,China
AbstractObjective: To investigate the effect of human Cu/Zn superoxide dismutase (hSOD1) gene with G93A mutation on Nrf2/ARE signaling pathway in NSC-34 cell,the transgenic cell model of amyotrophic lateral sclerosis (ALS). Methods: The established plasmids, hSOD1-pcDNA3.1(-), hSOD1-G93A-pcDNA3.1(-), and pcDNA3.1(-) were transfected into NSC-34 cells, the transgenic cell model of amyotrophic lateral sclerosis. The models were divided into four groups according to different transfected plasmids. They were normal group, empty group, wild group and mutation group. The oxidative-stress injury was evaluated by detecting the content of intracellular malondialdehyde(MDA),a lipid peroxidation product. The permeability of mitochondrial membrane was detected. Western blotting was used to determine the intracellular protein expression level of Nrf2 and antioxidase, so as to reveal the activation level of the Nrf2/-ARE signaling pathway in each group. Results: The level of oxidative stress and the mitochondrial permeability increased in the NSC-34 cells transfected with human hSOD1-G93A-pcDNA3.1(-) gene(mutation group,P<0.05), which implied impairment of mitochondrias. The protein expression level of Nrf2, significantly decreased in NSC-34 cells transfected with hSOD1-G93A gene(P<0.05). So were heme oxygenase-1 (HO-1) and NAD(P)H: quinone oxidoreductase 1 (NQO1), downstream effector molecules of Nrf2-ARE signaling pathway. The expression of Nrf 2 in cytoplasm significantly decreased in mutation group, while Nrf2 expression in cell nucleus significantly increased (P<0.05) in mutation group and wild group, especially in mutation group (P<0.05). Conclusions: The G93A mutation of hSOD1 gene impairs Nrf2/ARE signaling pathway in ALS cell models, reduces the antioxidant ability of cells, and increase the impairment of mitochondrias.
Key WordsAmyotrophic lateral sclerosis; NSC-34 cells;Nrf2/ARE signaling pathway
通訊作者張平安,E-mail:zhangpingan@aliyun.com
中圖分類號R34
文獻標識碼A