999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

畜禽養殖過程抗生素使用與耐藥病原菌及其抗性基因賦存的研究進展

2015-03-14 01:18:20隋倩雯張俊亞魏源送陳梅雪董紅敏熊繼海
生態毒理學報 2015年5期
關鍵詞:耐藥

隋倩雯,張俊亞,魏源送,,*,陳梅雪,董紅敏,熊繼海

1. 中國科學院生態環境研究中心 環境模擬與污染控制國家重點聯合實驗室,北京 100085 2. 中國農業科學院農業環境與可持續發展研究所,北京 100081 3. 江西省科學院能源研究所,南昌 330096

畜禽養殖過程抗生素使用與耐藥病原菌及其抗性基因賦存的研究進展

隋倩雯1,張俊亞1,魏源送1,3,*,陳梅雪1,董紅敏2,熊繼海3

1. 中國科學院生態環境研究中心 環境模擬與污染控制國家重點聯合實驗室,北京 100085 2. 中國農業科學院農業環境與可持續發展研究所,北京 100081 3. 江西省科學院能源研究所,南昌 330096

獸用抗生素在提高畜禽生產性能、防治疾病方面發揮著重要作用,目前全球超過一半以上抗生素用于畜禽養殖,畜禽養殖源耐藥病原菌、抗性基因及其傳播風險愈益得到人們的重視。我國是畜禽養殖和抗生素使用大國,但獸用抗生素使用、病原菌耐藥水平及其抗性基因類型等數據卻較為缺乏,不利于今后畜禽養殖源耐藥病原菌及其傳播風險的控制。因此,本文通過文獻調研,對我國和主要發達國家的獸用抗生素使用情況、畜禽養殖源耐藥病原菌及其攜帶的抗性基因、基因移動元件以及向環境傳播的途徑進行分析、總結,以期為規范合理用藥、降低耐藥病原菌及其抗性基因傳播風險,建立從畜禽養殖場至公共環境全過程的抗性污染控制鏈條提供借鑒。

獸用抗生素;重金屬;耐藥病原菌;抗生素抗性基因;基因移動元件

Received 22 September 2015 accepted 21 October 2015

世界衛生組織指出抗生素抗性是21世紀人類面臨最大的挑戰,但有關畜禽養殖業抗生素抗性的數據非常缺乏,應監督和促進畜禽養殖業的合理用藥,加強抗生素使用與抗性傳播的研究[1]。自1949年美國科學家發現飼料中添加金霉素可使豬、雞增重,節約飼料以來[2],獸用抗生素使用已有60年歷史。獸用抗生素按照用途分為3類,分別為促生長類(animal growth promoters)、預防類(prophylactic use)和治療類(therapeutic use)[3],隨著畜禽業的集約化、規模化發展,為提高動物生產性能、防治疾病,獸用抗生素發揮著重要作用。據統計全球獸用抗生素用量是人類用量的2倍[4]。全球平均牛、雞、豬在單位動物產品生產過程中抗生素消耗量分別為45、148和172 mg·kg-1[5]。2010年獸用抗生素用量最大的國家依次為中國(23%)、美國(13%)、巴西(9%)、印度(3%)和德國(3%),中國高居全球獸用抗生素消耗最大國家[5]。

抗生素以飼料添加、口服、注射等方式在畜禽養殖業使用,其中飼料添加劑抗生素用量最大。除抗生素之外,重金屬如銅、鋅、砷等礦物元素也作為飼料添加劑大量使用[6]。Chantziaras等[7]的研究表明獸用抗生素(包括氯霉素類、磺胺類、鏈霉素、四環素、氨基青霉素類、慶大霉素、第三代頭孢菌素等)用量與畜禽養殖源分離的埃希氏大腸桿菌(Escherichia coli, E. coli )的耐藥水平具有正相關關系。由于獸用抗生素引起細菌耐藥性,歐盟國家已在1997年開始逐步禁止促生長類抗生素的使用,在隨后的5年中畜禽養殖源分離的耐藥菌尤其雞源分離的糞腸球菌(Enterococcus faecium )對安普霉素、維吉尼亞霉素、泰樂菌素、卑霉素的耐藥率大幅降低[8]。不同于人用抗生素的使用與耐藥性監測,畜禽養殖過程的相關數據非常缺乏。

畜禽養殖源賦存大量病原菌,如腸桿菌科細菌、腸球菌、葡萄球菌等[9]。在抗生素的選擇壓力和重金屬的協同選擇作用下[10-11],動物腸道、糞便、廢水存儲大量耐藥病原菌[12-13],其攜帶的抗性基因由移動基因元件介導具有水平轉移功能[14],存在較大的疫病傳播和公共健康風險[15]。Martínez等[16]將移動基因元件介導且宿主細菌為人類病原菌的抗性基因排序為一級風險,與其他類型抗性基因相比對人類健康威脅最大。

由于畜禽糞便、糞水的還田利用或排放,畜禽源耐藥病原菌從養殖場傳播至外界環境(土壤、河流)[17-18],存在抗性污染的傳播風險,尤其畜禽源耐藥菌對環境抗性水平提高的貢獻以及對公共健康安全的威脅,目前仍未有定論,缺乏系統性研究與評估[19]。此外,有研究表明人類腸道四環素抗性基因豐度最高,極有可能來自于獸用抗生素的使用以及抗性基因沿食物鏈的傳播[20]。有研究從蔬菜分離得到來自于動物糞便的耐藥病原菌及抗性基因[9, 21]。耐藥病原菌及其攜帶的抗性基因沿食物鏈傳播,可能是畜禽養殖抗性基因向人類傳播的途徑之一,然而該傳播機制尚不明確。

因此,本文通過文獻調研,總結歸納了我國及主要發達國家獸用抗生素以及重金屬使用情況,畜禽養殖源分離的病原菌的耐藥水平及其攜帶的抗性基因,以及由移動基因元件介導的抗性基因類型,并探討了畜禽養殖場通過糞便的土地利用引起環境中耐藥病原菌傳播的可能。本文著重從畜禽養殖抗生素使用到動物與環境中耐藥病原菌及其抗性基因為主線進行總結、討論,并對今后的研究重點和方向提出建議和展望,以期為合理使用獸用抗生素與重金屬、降低環境抗生素抗性傳播提供借鑒。

1 我國和主要發達國家獸用抗生素和重金屬的使用狀況(The veterinary antibiotics and heave metal use in China and other developed countries)

中國是抗生素生產和消費大國。據統計2013年我國抗生素生產總量24.8萬t,國內消耗16.2萬t,磺胺類、四環素類、氟喹諾酮類、大環內脂類、β-內酰胺類及其他分別占總用量的5%、7%、17%、26%、21%和24%,消耗的抗生素中48%用于人類,52%用于動物[22]。我國獸用抗生素的生產主要集中于山東、河南、河北、江蘇、四川等畜禽養殖大省[23]。飼料添加是獸用抗生素的重要組成部分。Coates等[24]研究發現飼料抗生素對無菌動物無明顯生長促進作用,其作用機理在于抑制腸道有害微生物生長,減少對營養成分的競爭;還可使腸絨毛和腸壁變薄,進而提高飼料的養分代謝率。我國農業部在《飼料藥物添加劑使用規范》中將飼料添加抗生素分為2類,一類可在飼料中長時間添加使用,主要用于促進動物生長;另一類是通過混飼給藥的飼料添加劑,用于防治動物疾病,規定了用量、用法和休藥期。第一類促生長抗生素包括聚醚離子載體類6種、多肽類5種、四環素類2種,另外包括砷制劑2種;而第二類防治動物疾病的抗生素包括大環內脂類3種、氨基糖苷類4種、磺胺類3種、喹諾酮類2種、林可酰胺類1種等[25]。根據我國獸用抗生素的使用規范和文獻中其他種類獸用抗生素的使用情況,將其分類總結于表1。

作為允許飼料抗生素使用的國家之一,美國存在飼料抗生素普遍使用的現象。2011年美國食品和藥物管理局(Food and Drug Administration, FDA)報告指出,美國每年消耗的抗生素超過一半用于動物生產而非用于人類,其中獸用抗生素按消耗量排序依次為四環素類(5 643 t)、離子載體類(4 123 t)、青霉素類(880 t)、大環內脂類(583 t)、磺胺類(371 t)、氨基糖苷類(214 t)、林可酰胺類(190 t)、頭孢菌素類(27 t)以及其他類(1 510 t)[26],其中用量最大的2類獸用抗生素與我國《飼料藥物添加劑使用規范》中第一類飼料添加劑種類相似。至今美國食品和藥物管理局仍允許抗生素作為生長促進和疾病預防目的使用,僅以自愿方式減少抗生素的使用[27]。美國712個豬場的調研發現,使用最多的獸用抗生素分別為四環素、卡巴多司、桿菌肽、泰樂菌素、安普菌素和林可霉素等種類,92.2%的抗生素是連續添加,而按飼養階段分類抗生素用量依次為保育豬>育成豬>育肥豬,但僅僅有12%的畜禽養殖場不使用抗生素飼料添加劑[28]。在不同飼養階段,抗生素的使用種類也存在差異。Apley等[29]統計了美國規模化豬場飼料抗生素使用情況,17種獸用抗生素中,保育豬較多使用金霉素、土霉素、替米考星,而育成豬/育肥豬較多使用金霉素、泰樂菌素和土霉素。實際飼養過程中,飼料抗生素在不同動物種類、飼養階段、添加量各有不同,詳見表2。例如,通常在生豬保育階段豬飼料中抗生素添加量高于其他飼養階段,即斷奶仔豬抗生素用量最大;而不同動物相比,豬的飼料抗生素添加量高于牛和雞,以單位動物產品估算,動物抗生素用量依次是豬>雞>牛[5]。

自1997年禁用安普霉素作為動物促生長劑(animal growth promoter)后,歐盟國家開始逐步擴大動物促生長劑類抗生素的禁用范圍,到2006年全面禁用動物促生長劑類抗生素。雖然隨之發現治療類抗生素使用量出現增加趨勢,但獸用抗生素總用量降低了50%[27]。據統計,2012年歐盟及歐洲經濟區(26國)的獸用抗生素用量合計8 046.4 t,依次為德國(1 714 t)、西班牙(1 694.7 t)、意大利(1 543 t)、法國(778.4 t)和波蘭(518.3 t);折合單位動物產品抗生素用量排序依次為塞浦路斯、意大利、匈牙利、西班牙和德國,分別為396.5、341、245.5、242和204.8 mg·(population correction unit, PCU)-1;不同種類獸用抗生素用量所占比例依次為四環素類(44.2%)、青霉素類(18.3%)、磺胺類(14.5%)、大環內脂類(9.1%)等[30],與我國和美國消耗的獸用抗生素類型較為相似。

如表3所示,重金屬(如銅、鋅、砷)通常作為礦物元素廣泛應用于畜禽養殖,是重要的飼料添加劑,用于提高飼料轉化率、促進動物生長、提高生產性能。我國和美國都允許飼料中添加重金屬[41-44],雖然歐盟國家已禁止促生長類抗生素的使用,但重金屬作為飼料添加劑仍被允許使用[6]。

不被吸收的重金屬以及代謝不完全的抗生素隨糞便、尿液排泄出來[31]。眾多研究表明養殖場抗生素、重金屬的排放與動物飼養過程抗生素的攝入有關,豬糞和污水中的抗生素和重金屬主要源于飼料添加[32-33]。關于畜禽養殖場抗生素的排放已有廣泛研究,對養殖場周邊土壤、水體環境造成較大影響[31-32, 34-35]。

2 畜禽養殖源耐藥病原菌及其攜帶的抗性基因(Antibiotic resistance pathogen and the carried antibiotic resistance genes in animal production)

畜禽養殖場是病原菌及抗性基因的重要蓄積庫[45-46],但目前畜禽養殖源耐藥病原菌及其攜帶的抗性基因研究極為不足。畜禽養殖環境病原菌種類多樣,其中包含大量病原菌(如葡萄球菌、腸球菌、沙門氏菌等)。Ferreira等[5]測試了豬場廢水中總大腸菌群(total coliform, TC)、E. coli 數量分別為1.2×106、2.8×105MPN·(100 mL)-1。Resende等[9]測定牛場糞水中腸球菌和腸桿菌科細菌(Enterobactetiaceae )數量分別為3.71×105和4.42×108CFU·mL-1。Brooks等[45]采用定量PCR方法測試了育肥豬場廢水中沙門氏菌、彎曲桿菌數量分別為7.24×103、1.41×104copies·mL-1,豐度分別為8.51×10-7、1.66×10-6copies/16S rRNA。Tulayakul等[33]測試了豬場廢水中沙門氏菌的血清型檢出頻率最高的依次為Rissen、Anatum、Kedougou、Stanley、Typhimurium、Paratyphi B var. Java。

表1 獸用抗生素的種類、抑菌方式及抑菌類型Table 1 Type and antimicrobial mode of veterinary antibiotics

注:a分類依據《飼料藥物添加劑使用規范》[25],*表示《飼料藥物添加劑使用規范》規定的促生長類抗生素;**《飼料藥物添加劑使用規范》規定的防治動物疾病類抗生素;***表示文獻中常用獸用抗生素;G+表示革蘭氏陽性菌;G-表示革蘭氏陰性菌。

Notes:aClassification according to “Norms for Application of Feed Additives”[25]; * denotes animal growth promoting antibiotics defined in “Norms for Application of Feed Additives”; ** denotes disease control antibiotics defined in “Norms for Application of Feed Additives”; *** denotes other veterinary antibiotics from references; G+denotes Gram-positive bacteria; G-denotes Gram-negative bacteria.

表2 飼料抗生素的添加量
Table 2 Usage of antibiotics in feed for animal production

抗生素Antibiotics金霉素(Chlortetracycline)土霉素(Oxytetracycline)替米考星(Tilmicosin)泰樂菌素(Tylosin)金霉素(Chlortetracycline)金霉素a(Chlortetracyclinea)磺胺甲嘧啶a(Sulfamerazinea)青霉素a(Penicillina)卡巴多司(Carbadox)莫能霉素鈉b,c(Monensinsodiumb,c)維吉尼亞霉素b(Virginiamycinb)磷酸泰樂菌素c(Tylosinphosphatec)金霉素(Chlortetracycline)莫能霉素鈉d(Monensinsodiumd)泰樂菌素d(Tylosind)動物種類與飼養階段Animaltypeandgrowthstage保育豬Nurserypig育成/育肥豬Finisher/fatteningpig保育豬Nurserypig育成/育肥豬Finisher/fatteningpig保育豬Nurserypig育成/育肥豬Finisher/fatteningpig保育豬Nurserypig育成/育肥豬Finisher/fatteningpig哺乳豬Lactatingsow妊娠豬Gestatingsow育肥(日齡:18周)Fattening,ageat18weeks保育豬Nurserypig肉雞Boiler肉牛Beefcattle肉牛(12~15個月齡)Beefcattle,ageat12-15months使用量/(g·t-1)Consumption/(g·t-1)促生長Growthpromotion疾病預防Diseaseprevention疾病治療Diseasetreatment2504004001004004005045045050400400363181363-36336340401002040100-330--550-100-100-50-1050110-15-20-22-29.9-11-文獻References[29][36][37][38][39][40][41]

注:aASP250飼料添加劑包含金霉素、磺胺甲嘧啶和青霉素;b莫能霉素鈉與維吉尼亞霉素結合使用;c莫能霉素鈉與磷酸泰樂菌素結合使用;d莫能霉素鈉與泰樂菌素結合使用;-無有效數據。

Notes:aASP250 feed addictive in comprise of chlortetracycline, sulfamerazine, penicillin;bMonensin sodium and virginiamycin combined use;cMonensin sodium and tylosin phosphate combined use;dMonensin sodium and tylosin combined use; - not available.

表3 飼料中重金屬添加種類、作用及使用量Table 3 Category, function and dosage of heavy metals in feed summarized from literature

抗生素對動物腸道和糞便細菌具有選擇壓力,改變了細菌菌群結構。Danzeisen等[39]的研究結果表明,莫能霉素(monensin)與維吉尼亞霉素(virginiamycin)或與泰樂菌素(tylosin)結合使用會顯著改變肉雞盲腸菌群結構,使E. coli 數量提高。Looft等[37]的研究表明,飼料中添加ASP250(金霉素、磺胺甲嘧啶、青霉素的混合物,見表3)使豬糞中變形菌門(Proteobacteria )的比例從1%提高到11%,其中E. coli 比例增加20至100倍。

除細菌菌群結構改變以外,抗生素還對動物腸道、糞便細菌的耐藥性具有選擇壓力,提高了細菌耐藥水平。研究表明肉牛飼喂金霉素會顯著增加糞便中E. coli 和腸球菌的耐藥率[40]。氨芐西林用于仔豬飼養,口服或注射(20 mg·kg-1body weight)都會顯著提高糞便中腸桿菌科細菌的耐藥性,注射抗生素的耐藥率從0.9%~12%升高至26%,口服抗生素的耐藥率提高至49%;口服抗生素會使糞便中blaTEM拷貝數從104~106copies·g-1升高至107~109copies·g-1,而注射對糞便中抗性基因的影響不顯著[47]。Looft等[37]的研究發現,飼料中添加金霉素、磺胺甲嘧啶、青霉素顯著提高了豬糞中四環素外排泵、A類β -內酰胺酶、磺胺抗性、氨基糖苷磷酸轉移酶、兩類外排泵的抗性基因豐度。病原菌或潛在病原菌的耐藥性及攜帶的抗性基因在動物腸道、糞便、廢水中分布詳見表4。

目前我國和部分發達國家的相關職能部門定期開展動物源細菌的耐藥性測試。例如,我國農業部開展了對畜禽養殖場、屠宰場的動物腸道、動物產品的動物源細菌耐藥性監測,2013年涵蓋了15個畜禽養殖大省,細菌種類包括大腸桿菌、腸球菌、沙門氏菌、金黃色葡萄球菌、空腸彎曲桿菌、豬多殺巴氏桿菌和副豬嗜血桿菌;耐受藥物主要包括青霉素、鏈霉素、紅霉素、泰樂菌素、四環素、萬古霉素等主要抗生素種類[48],但我國動物源細菌耐藥性數據卻鮮有公開報道。美國疾病控制中心、農業部、食品和藥物管理局定期聯合發布全國耐藥性檢驗報告(National Antimicrobial Resistance Monitoring System, NARMS),其中包括動物源細菌耐藥性檢驗結果,并給出相關耐藥菌比例,如沙門氏菌由人類、屠宰雞、屠宰豬分離得到的多重耐藥率分別為9%、8%和16%[49]。

腸球菌和金黃色葡萄球菌是重要監控的畜禽源革蘭氏陽性菌類型。動物飼喂泰樂菌素顯著提高了糞便中大環內脂耐藥菌及其抗性基因的數量[50]。而畜禽糞便中分離得到的大環內脂-林可酰胺-鏈陽霉素B(macrolide-lincosamide-streptogramin B, MLSB)多重耐藥菌可能與飼喂泰樂菌素有關[41],其中糞腸球菌(Enterococcus faecalis )具有MLSB多重耐藥性是質粒pAMβ1攜帶的抗性基因erm B介導[12]。耐萬古霉素腸球菌(vancomycin-resistant enterococci, VRE)可能與飼料中添加的安普霉素有關[51],萬古霉素是治療腸球菌和金黃色葡萄球菌等革蘭氏陽性菌引發疾病的“最后抗生素”,美國疾病防控中心將VRE歸為“具有嚴重威脅”的耐藥菌,而動物源分離的VRE由van A介導,具有萬古霉素和替考拉寧抗性[52],因此VRE傳播存在很大的疫病防治隱患。葡萄球菌也是重要的畜禽養殖源致病微生物,Neyra等[53]研究了屠宰場工人攜帶的金黃色葡萄球菌(Staphylococcus aureus )的耐藥性,發現由mec A編碼的甲氧西林耐藥率為14.3%,多重耐藥率為37.1%,主要耐受紅霉素、頭孢西丁、環丙沙星等抗生素,表明耐藥菌及抗性基因可能通過動物屠宰以及動物產品的途徑進行傳播。

大腸埃希氏菌(大腸桿菌)、沙門氏菌、志賀氏菌等腸桿菌科(Enterobacteriaceae )革蘭氏陰性細菌也是重要的動物源致病菌,同時是食品源微生物的重要檢測與控制指標。β-內酰胺類抗生素包括青霉素類和頭孢菌素類,應用廣泛。然而β-內酰胺酶可由腸桿菌科細菌產生使抗生素失活。頭孢噻呋是用作動物疾病治療的第三代頭孢菌素,主要用于治療奶牛乳腺炎、動物呼吸道和腸道疾病[54-55],然而研究表明牛和豬在使用頭孢噻呋后糞便分離的大腸桿菌、沙門氏菌具有人用三代頭孢菌素(如頭孢曲松鈉)的抗性[13, 56]。Wu等[57]發現豬糞分離的E. coli 中普遍存在磺胺類抗性基因,其中sul 2(44%)檢出率高于sul 1(29%),sul 基因由不兼容質粒(Inc)介導,轉移接合率為82%。

表4 畜禽養殖源致病性耐藥菌種類與分布Table 4 Antibiotic resistant pathogens and the distributions from animal source

續表4細菌Bacteria樣品來源Samplesource抗生素藥物Antibiotics中介和耐藥比例/%Mediateandresistancelevel/%攜帶的抗性基因ThecarriedARGs國家、文獻Countryandreference沙門氏菌(Salmonella)(G-)屠宰動物和動物產品(Slaughteranimalandanimalproduct)豬糞便(Pigmanure)豬、雞、鴨糞便、屠宰場和零售產品拭子(Pig,chickenandduckmanure,slaughterhouseandretailproductswab)豬尸體、糞便、淋巴液拭子(Pigcarcass,manureandlymphswab)家禽腸道拭子(Poultryintestinalswab)鏈霉素(Streptomycin)、慶大霉素(Gentamincin)82.6aadA2、aacCA5、aadA7、aadB、catB3磺胺甲惡唑(Sulfamethoxazole)42.8dfrA1、dfrA12氨芐西林(Ampicillin)42.8blaPSE-1頭孢曲松鈉(CeftriaxoneSodium)6.0blaCMY頭孢噻吩(Cefalotin)98blaPSE-1、blaTEM-1、blaOXA-1、blaCMY-2磺胺甲惡唑(Sulfamethoxazole)41dfrA1硫酸粘桿菌素(Colistinsulfate)27.4-環丙沙星(Ciprofloxacin)1.7qnrB2、qnrB19埃塞俄比亞(Ethiopia)[69]美國(USA)[13]中國(China)[34]巴西(Brazil)[64]匈牙利(Hungary)[68]

注:a-用于采樣的滅菌棉拭子,b-無有效數據,c具有甲氧西林耐藥性的金黃色葡萄球菌,d慶大霉素和安普霉素交叉抗性。

Notes:a- sterile swab for sampling,b-not available,cwith methicillin- resistant Staphylococcus aureus (MRSA),dcross- resistance to gentamicin and apramycin.

3 畜禽養殖源中移動基因元件介導的抗生素抗性基因(Antibiotic resistance genes mediated by mobile genetic elements in animal production)

Martínez等[16]指出移動基因元件介導的抗性基因具有較高的傳播風險。表5總結了由畜禽養殖源分離得到的移動基因元件介導的抗性基因。細菌依靠基因移動元件(mobile genetic element, MGE)包括接合質粒、轉座元件(轉座子和插入序列)和整合子發生基因的水平轉移[14]。Looft等[37]研究發現,飼料抗生素(金霉素、磺胺甲嘧啶、青霉素)顯著提高了未添加抗生素(如氨基糖苷類)的抗性基因和多藥劑外排泵(multi-drug efflux)的豐度,這可能由于多種抗性基因位于同一移動原件上,由抗生素的協同選擇(co-selection)所造成。Chen等[41]指出飼喂泰樂菌素對牛糞中四環素抗性基因(tet A、tet G和核糖體保護類四環素抗性基因)具有協同選擇的作用。Kanwar等[62]發現,與飼料中不添加金霉素相比,添加金霉素會顯著增加牛糞中blaCMY-2和blaCTX-M的豐度,可能存在金霉素對頭孢菌素類抗性基因的協同選擇作用。雖然農業部及藥品監管部門限制了獸用抗生素的使用種類,但其協同選擇作用可能引起人用抗生素(如第三代頭孢菌素、萬古霉素)的抗性水平提高。然而,協同選擇不僅發生在抗生素之間,Seiler等[6]指出重金屬對抗生素抗性基因具有協同選擇作用。協同選擇的原因之一為某種抗性基因編碼的酶或蛋白具有提高細胞耐受多種抑菌物質(如抗生素或重金屬)的能力,如多重藥劑外排泵(multi drug efflux pumps),可以將毒性物質迅速排出細胞外[11, 14]。另一方面,2種或多種抗性功能的基因相互鄰近并在同一個移動基因元件上[70],如豬糞中分離的質粒pMC2,攜帶了大環內脂、四環素等抗生素抗性基因和汞、鉻等重金屬抗性基因,具有很強的移動和接合能力[71]。由于重金屬與抗生素的協同選擇作用,增加了抗生素抗性傳播的控制難度和抗性基因研究的復雜程度,而由移動基因元件介導的抗性基因是相關研究的重點。

Binh等[72]的研究表明,豬糞中分離的接合質粒包括IncP-1、pHV216-like、IncN、IncW,其中IncN比例最高(34%),攜帶阿莫西林、磺胺嘧啶的抗性基因分別為bla TEM、sul 1、sul 2、sul 3。

整合子是重要的基因移動元件,在豬糞及其施用的土壤中廣泛存在。Agers?等[73]的研究表明,33%豬糞分離的革蘭氏陰性菌、17%豬糞分離的革蘭氏陽性菌、5%土壤分離的革蘭氏陰性菌、12%土壤分離的革蘭氏陽性菌攜帶一類整合子,其中土壤中攜帶一類整合子的菌屬分別為假單胞菌、產堿桿菌、棒狀桿菌、節桿菌;豬糞中攜帶一類整合子的菌屬分別為E. coli 、腸桿菌、節桿菌等。

Zhang等[74]研究了不同養殖來源E. coli 中由整合子介導抗性基因的分布特征,發現只有雞場分離的E. coli 攜帶二類整合子(int I2),int I2攜帶的基因盒長度為2 400 bp,介導的抗性基因序列dfr A1-sat 1-aad A1-orf X,轉移接合率為69.2%;int I1攜帶介導的抗性基因序列分別為aad A23B、aad A2、arr -3-dfr16等,基因盒長度為1 009~2 000 bp小于int I2攜帶的基因長度,轉移接合率74.8%。

表5 畜禽養殖源移動基因元件介導的抗性基因Table 5 ARGs mediated by mobile gene elements in animal source

注:a質粒上攜帶轉座子和插入序列,- 無有效數據。

Notes:aThe plasmid contained transposon and insertion sequence, - not available.

諸多研究表明,腸球菌攜帶的銅抗性基因(tcr B和cue O)與四環素、大環內脂、萬古霉素、氨芐西林的抗性基因具有協同轉移(co-transfer)的特點,這可能因為它們位于同一基因移動元件上[75-76]。Amachawadi等[77]的研究表明,肉牛飼料中礦物元素銅添加量的增加(10 mg·kg-1提高到100 mg·kg-1)顯著提高了糞便中耐銅屎腸球菌(Enterococcus faecium )豐度(P <0.05),抗銅基因tcr B由接合質粒介導并同時攜帶四環素和大環內脂類抗性基因tet M和erm B,與糞腸球菌(Enterococcus faecalis )種間水平轉移率為2.0×10-5。Cavaco等[78]發現由豬場和肉牛場分離的耐甲氧西林金黃色葡萄球菌(MRSA)同時攜帶抗鋅表型和抗鋅基因(czr C),表明飼料中添加鋅可能促進MRSA的出現,促進其傳播。由基因移動元件介導的抗生素抗性基因及其對重金屬響應的研究還較為不足,由于重金屬對抗生素抗性基因的協同選擇作用,在重金屬飼料添加使用方面應更為謹慎。

4 抗生素耐藥性從畜禽養殖場向環境的傳播(Antibiotic resistance spread from animal farm to environment)

抗性基因及基因移動元件從畜禽養殖場向外界傳播途徑如圖1所示,主要傳播途徑包括畜禽養殖人員的暴露,畜禽產品的造成食品加工人員的暴露,以及畜禽糞污還田利用造成環境和人群的暴露。畜禽糞便、肉質產品中賦存的病原菌耐藥水平及其抗性基因類型已在表4進行了總結,且畜禽養殖人員和食品加工者在抗生素抗性中的暴露主要是對小范圍人群的影響。然而畜禽糞污還田利用使糞污中攜帶的耐藥病原菌以及基因移動元件暴露于土壤、徑流,使抗性污染從養殖場傳播至外界環境,存在較大的疾病傳播和公共健康隱患。然而該傳播機制尚不明確[19],今后有待深入研究。

圖1 抗性基因和移動基因元件從畜禽(以禽類為例)養殖場向公共環境的傳播[81]

畜禽廢棄物中賦存的病原菌在還田過程仍會長時間存活,不同細菌在土壤中的賦存時間不同。Jacobsen等[82]指出養殖場及周邊環境是沙門氏菌的多發環境,沙門氏菌主要通過糞便、廢水的還田利用向土壤環境傳播,而沙門氏菌在土壤中可存活數周甚至數月。Piorkowski等[83]的研究結果表明,牛糞水還田后E. coli 消減1 log需要約40~50 d,消減2 log則需要約60~76 d。Wang等[84]的研究表明,E. coli O157:H7在土壤中平均存活時間為2.1~3.6 d,而沙質土、低pH值、低有機碳含量的土壤中E. coli O157:H7賦存時間較短。

畜禽養殖廢棄物還田利用可能引起耐藥病原菌進入土壤環境,使土壤中細菌耐藥性和抗性基因豐度提高。Pourcher等[17]將恩諾沙星飼喂的雞糞施用于農田土壤,發現在前35天腸桿菌科細菌豐度有所提高之后逐漸恢復本底水平,而耐恩諾沙星E. coli 由雞糞引入,可在土壤中存活89 d以上。Cook等[85]研究了雞糞還田后腸球菌的演變,發現腸球菌在土壤中90%消減時間需要7.41 d,施肥后148 d土壤中腸球菌仍維持在2~3 log CFU·g-1,土壤中抗性基因tet W、sul 1、str B在施肥148 d后仍無法恢復本底水平。Bech等[86]研究發現大腸桿菌和四環素耐藥菌會在糞水還田的土壤中持續存活46~49 d。

畜禽養殖廢棄物的排放或土地利用導致周邊環境(土壤、河流)病原菌耐藥水平的提高。West等[18]指出鄰近畜禽養殖場的河流雖然常規水質指標滿足標準,但糞大腸桿菌具有較高的多重耐藥菌率(41.6%),比其他河流高25.1%,所攜帶的tet B、tet C由質粒介導可以與鼠傷寒沙門氏菌(Salmonella tyhimurium )間發生接合轉移。Chee-Sanford等[88]發現豬場氧化塘下游250 m仍可測得四環素抗性基因tet M,養殖場四環素耐藥菌主要為腸球菌、葡萄球菌、羅伊氏乳桿菌(Lactobacillus reuteri )。Chen等[41]研究了福建閩江流域E. coli 的耐藥性,畜禽糞便可能是該流域抗生素耐藥率高的重要因素,分離的大腸桿菌中41%攜帶一類整合子,整合子的基因盒攜帶aad A1、drf A1、drf A27、arr -3等抗性基因。

畜禽養殖廢水澆灌蔬菜引起蔬菜攜帶抗性基因和耐藥菌的研究較少,然而該途徑可能是畜禽養殖源抗性基因進入食物鏈的途徑之一,但相關研究非常缺乏。Yang等[88]對施用雞糞種植的蔬菜內生菌進行了耐藥性測試,發現在芹菜、小白菜、黃瓜中頭孢氨芐耐藥菌的比例分別為16.9%~86.33%、21.76%~91.31%和0.21%~0.44%,蔬菜內生菌具有抗生素抗性的原因可能是耐藥菌通過土壤進入植物,或者由于土壤中抗性基因被植物吸收,這需要進一步研究。Hofmann等[89]采用FISH-CLSM研究病原菌在植物根際的寄生位置,發現植物表皮細菌及內生菌中存在沙門氏菌等病原菌,與糞便相比,廢水農田利用存在更大的病原菌傳播風險。Reuland等[90]檢測了荷蘭零售蔬菜中超廣譜β-內酰胺酶(extended beta-lactamase, ESBL)腸桿菌科細菌,發現6%的蔬菜檢測到ESBL腸桿菌科細菌,其攜帶的抗性基因包括blaCTX-M-15、blaCTX-M-14、blaCTX-M-1、blaSHV-12,作者推測這可能與畜禽糞便的還田利用有關,進而引起了抗性基因沿食物鏈的傳播。Marti等[91]發現,施用豬糞的蔬菜表皮抗性基因的檢出率較高,包括IncP ori V、sul 2、tet (BT)、erm A/F、qnr B、blaPSE和blaOXA-20等抗性基因,指出直接食用蔬菜是人類接觸土壤耐藥菌和抗性基因的途徑之一。

5 結語與展望(Conclusion and outlook)

(1)我國是獸用抗生素生產和使用大國,盡管已出臺獸用抗生素種類與用量的相關規定,但抗生素的實際使用水平及其對耐藥性影響仍鮮有公開報道。更為嚴格的抗生素使用規范是大勢所趨,全面、系統的抗生素使用與耐藥性數據有利于標準的修訂。

(2)畜禽糞便、廢水是病原菌和抗性基因的重要蓄積庫。應深入研究病原菌具有的耐藥表型和攜帶的抗性基因,建立抗生素使用與病原菌耐藥性、抗性基因的聯系,有利于合理用藥,從而降低病原菌的耐藥水平。

(3)應深入研究由基因移動元件介導的抗性基因,尤其在重金屬的協同選擇作用下,加強其在病原菌之間發生的水平轉移效率、抗性傳播風險的機制研究,從誘導腸道、糞便中的耐藥病原菌入手,深入研究飼料中重金屬的添加閾值。

(4)畜禽養殖糞便、廢水從養殖場通過還田利用、灌溉等途徑進入環境,由移動基因元件介導且宿主為人類病原菌的抗性基因存在較大的公共健康威脅,然而從畜禽養殖場到環境的抗性傳播機制尚不明確,應深入研究建立從畜禽養殖場至公共環境全過程的抗性污染控制鏈條。

[1] WHO. Antimicrobial Resistance: Global Report on Surveillance [R]. WHO, 2014

[2] 劉金旭. 配合飼料中的抗生素[J]. 國外畜牧科技, 1986(2): 47

[3] Barton M D. Antibiotic use in animal feed and its impact on human health [J]. Nutrition Research Reviews, 2000, 13(2): 279-299

[4] Aarestrup F. Sustainable farming: Get pigs off antibiotics [J]. Nature, 2012, 486(7404): 465-466

[5] Van Boeckel T P, Brower C, Gilbert M, et al. Global trends in antimicrobial use in food animals [C]. Proceedings of the National Academy of Sciences, 2015, 112(18): 5649-5654

[6] Seiler C, Berendonk T U. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture [J]. Frontiers in Microbiology, 2012, 3: 399

[7] Chantziaras I, Boyen F, Callens B,et al. Correlation between veterinary antimicrobial use and antimicrobial resistance in food-producing animals: A report on seven countries [J]. Journal of Antimicrobial Chemotherapy, 2014, 69(3): 827-834

[8] Wegener H C. Ending the use of antimicrobial growth promoters is making a difference [J]. ASM News, 2006, 69(9): 443-448

[9] Resende J A, Silva V L, de Oliveira T L R, et al. Prevalence and persistence of potentially pathogenic and antibiotic resistant bacteria during anaerobic digestion treatment of cattle manure [J]. Bioresource Technology, 2014, 153: 284-291

[10] Walczak J J, Xu S. Manure as a source of antibiotic-resistant Escherichia coli and Enterococci : A case study of a Wisconsin , USA family dairy farm [J]. Water Air Soil Pollution, 2011, 219(1-4): 579-589

[11] Baker-Austin C, Wright M S, Stepanauskas R, et al. Co-selection of antibiotic and metal resistance [J]. Trends in Microbiology, 2006, 14(4): 176-182

[12] Marosevic D, Cervinkova D, Vlkova H, et al. In vivo spread of macrolide-lincosamide-streptogramin B (MLSB) resistance-A model study in chickens [J]. Veterinary Microbiology, 2014, 171(3-4): 388-396

[13] Lutz E , McCarty M J, Mollenkopf D F, et al. Ceftiofur use in finishing swine barns and the recovery of fecal Escherichia coli or Salmonella spp. resistant to ceftriaxone [J]. Foodborne Pathogens and Disease, 2011, 8(11): 1229-1234

[14] Bennett P M. Plasmid encoded antibiotic resistance: Acquisition and transfer of antibiotic resistance genes in bacteria [J]. British Journal of Pharmacology, 2008,153(s): S347-S357

[15] 張俊亞, 魏源送, 陳梅雪, 等. 畜禽糞便生物處理與土地利用全過程中抗生素和重金屬抗性基因的遷移轉化研究進展[J]. 環境科學學報, 2015, 35(4): 935-946

Zhang J Y, Wei Y S, Chen M X, et al. Fate of antibiotic and heavy metal resistance genes during the whole biological treatment and soil application process of livestock manure: A review [J]. Acta Scientiae Circumstantiae, 2015, 35(4): 935-946 (in Chinese)

[16] Martínez J L, Coque T M, Baquero F. What is a resistance gene? Ranking risk in resistomes [J]. Nature Reviews Microbiology, 2014, 13(2): 116-123

[17] Pourcher A M, Jadas-Hécart A, Cotinet P, et al. Effect of land application of manure from enrofloxacin-treated chickens on ciprofloxacin resistance of Enterobacteriaceae in soil [J]. Science of the Total Environment, 2014, 482-483(3): 269-275

[18] West B M, Liggit P, Clemans D L, et al. Antibiotic resistance, gene transfer, and water quality patterns observed in waterways near cafo farms and wastewater treatment facilities [J]. Water Air Soil Pollution, 2011, 217(1-4): 473-489

[19] Berendonk T U, Manaia C M, Merlin C, et al. Tackling antibiotic resistance: The environmental framework [J]. Nature Reviews Microbiology, 2015, 13: 310-317

[20] Hu Y, Yang X, Qin J, et al. Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota [J]. Nature Communications, 2013, 4: 2151

[21] 隋倩雯, 張俊亞, 魏源送, 等. 畜禽養殖廢水生物處理與農田利用過程抗生素抗性基因的轉歸特征研究進展[J]. 環境科學學報(已接受), 2015

Sui Q W, Zhang J Y, Wei Y S, et al. Fate of antibiotic resistance genes in the total process of biological treatment and land application of animal wastewater: An overview [J]. Acta Scientiae Circumstantiae, 2015 (accepted) (in Chinese)

[22] Zhang Q Q, Ying G G, Pan C G, et al. A comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modelling, and linkage to bacterial resistance [J]. Environmental Science & Technology, 2015, 49: 6772-6782

[23] 中華人民共和國農業部. 中國動物衛生狀況報告[R]. 北京: 中國農業出版社, 2009

[24] Coates M E, Davies M K, Kon S K. The effect of antibiotics on the intestine of the chick [J]. The British Journal of Nutrition, 1955, 9(1): 110-119

[25] 中華人民共和國農業部. 飼料藥物添加劑使用規范[S]. 北京: 中華人民共和國農業部, 2001

[26] United States Food and Drug Administration (US FDA). Summary Report on Antimicrobials Sold or Distributed for Use in Food-Producing Animals [R]. Washington DC: FDA, 2011

[27] Maron D F, Smith T J S, Nachman K E. Restrictions on antimicrobial use in food animal production: An international regulatory and economic survey [J]. Globalization and Health, 2013, 9: 48

[28] Dewey C, Cox B, Straw B, et al. Use of antimicrobials in swine feeds in the United States [J]. Swine Health and Production, 1999, 7(1): 19-25

[29] Apley M D, Bush E J, Morrison R B, et al. Use estimates of in-feed antimicrobials in swine production in the United States [J]. Foodborne Pathogens and Disease, 2012, 9(3): 272-279

[30] European Medicines Agency. Sales of Veterinary Antimicrobial Agents in 25 EU/EEA Countries in Third ESVAC Report [R]. London: European Medicines Agency, 2013

[31] 王瑞, 魏源送. 畜禽糞便中殘留四環素類抗生素和重金屬的污染特征及其控制[J]. 農業環境科學學報, 2013, 32(9): 1705-1719

Wang R, Wei Y S. Pollution and control of tetracyclines and heavy metals residues in animal manure [J]. Journal of Agro-Environment Science, 2013, 32(9): 1705-1719 (in Chinese)

[32] Zhou L J, Ying G G, Liu S, et al. Excretion masses and environmental occurrence of antibiotics in typical swine and dairy cattle farms in China [J]. Science of the Total Environment, 2013, 444: 183-195

[33] Tulayakul P, Boonsoongnern A, Kasemsuwan S, et al. Comparative study of heavy metal and pathogenic bacterial contamination in sludge and manure in biogas and non-biogas swine farms [J]. Journal of Environmental Sciences, 2011, 23(6): 991-997

[34] Li J, Shao B, Shen J,et al. Occurrence of chloramphenicol-resistance genes as environmental pollutants from swine feedlots [J]. Environmental Science & Technology, 2013, 47(6): 2892-2897

[35] Zhou L J, Ying G G, Zhang R Q, et al. Use patterns, excretion masses and contamination profiles of antibiotics in a typical swine farm, South China [J]. Environmental Science: Processes & Impacts, 2013, 15(4): 802-813

[36] Duriez P, Topp E. Temporal dynamics and impact of manure storage on antibiotic resistance patterns and population structure of Escherichia coli isolates from a commercial swine farm [J]. Applied and Environmental Microbiology, 2007, 73(17): 5486-5493

[37] Looft T, Johnson T A, Allen H K, et al. From the cover: In-feed antibiotic effects on the swine intestinal microbiome [J]. Proceedings of the National Academy of Sciences, 2012, 109(5): 1691-1696

[38] Allen H K, Looft T, Bayles D O, et al. Antibiotics in feed induce prophages in swine fecal microbiomes [J]. MBio, 2011, 2(6):1-9

[39] Danzeisen J L, Kim H B, Isaacson R E, et al. Modulations of the chicken cecal microbiome and metagenome in response to anticoccidial and growth promoter treatment [J]. PLoS One, 2011, 6(11): e27949

[40] Platt T M, Loneragan G H, Scott H M, et al. Antimicrobial susceptibility of enteric bacteria recovered from feedlot cattle administered chlortetracycline in feed [J]. American Journal of Veterinary Research, 2008, 69(8): 988-996

[41] Chen J, Fluharty F L, St-Pierre N, et al. Technical note: Occurrence in fecal microbiota of genes conferring resistance to both macrolide-lincosamide-streptogramin B and tetracyclines concomitant with feeding of beef cattle with tylosin [J]. Journal of Animal Science, 2008, 86(9): 2385-2391

[42] 趙飛燕, 汪以真. 我國飼料安全的現狀與對策[J]. 中國飼料, 2004(4): 37-39

[43] 彭點懿, 何健, 楊玉峰. 氧化鋅在斷奶仔豬配合飼料中的應用及其抗腹瀉的可能機制[R]. 中國畜牧雜志, 2011, 47(20): 66-70

[44] 西南大學. 重金屬與金霉素對無公害肉豬生產和環境的影響研究: 中國[P/OL]. (2008-08-06).

[45] Brooks J P, Adeli A, McLaughlin M R. Microbial ecology, bacterial pathogens, and antibiotic resistant genes in swine manure wastewater as influenced by three swine management systems [R]. Water Research, 2014, 57: 96-103

[46] Zhu Y G, Johnson T, Su J Q, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(9): 3435-3440

[47] Bibbal D, Dupouy V, Ferré J P, et al. Impact of three ampicillin dosage regimens on selection of ampicillin resistance in Enterobacteriaceae and excretion of blaTEMgenes in swine feces [J]. Applied and Environmental Microbiology, 2007, 73(15): 4785-4790

[48] 中華人民共和國農業部. 2013年動物源細菌耐藥性監測計劃[R]. 北京: 中華人民共和國農業部, 2013

[49] United States Food and Drug Administration (US FDA). National antimicrobial resistance monitoring system [R]. Washington DC: US The Centers for Disease Control and Prevention, 2009

[50] Jacob M E, Fox J T, Narayanan S K, et al. Effects of feeding wet corn distillers grains with solubles with or without monensin and tylosin on the prevalence and antimicrobial susceptibilities of fecal foodborne pathogenic and commensal bacteria in feedlot cattle [J]. Journal of Animal Science, 2008, 86(5): 1182-1190

[51] Kühn I, Iversen A, Finn M, et al. Occurrence and relatedness of vancomycin-resistant Enterococci in animals, humans, and the environment in different European regions [J]. Applied and Environmental Microbiology, 2005, 71(9): 5383-5390

[52] Dutka-Malen S, Evers S, Courvalin P. Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant Enterococci by PCR [J]. Journal of Clinical Microbiology, 1995, 33(1): 24-27

[53] Neyra R C, Frisancho J A, Rinsky J L, et al. Multidrug-resistant and methicillin-resistant Staphylococcus aureus (MRSA) in hog slaughter and processing plant workers and their community in North Carolina (USA) [J]. Environmental Health Perspectives, 2014, 122(5): 471-477

[54] Dahmen S, Métayer V, Gay E, et al. Characterization of extended-spectrum beta-lactamase (ESBL)-carrying plasmids and clones of Enterobacteriaceae causing cattle mastitis in France [J]. Veterinary Microbiology, 2013, 162(2-4): 793-799

[55] Sato T, Okubo T, Usui M, et al. Association of veterinary third-generation cephalosporin use with the risk of emergence of extended-spectrum-cephalosporin resistance in Escherichia coli from dairy cattle in Japan [J]. PLoS One, 2014, 9(4): e96101

[56] Jiang X, Yang H, Dettman B, et al. Analysis of fecal microbial flora for antibiotic resistance in ceftiofur-treated calves [J]. Foodborne Pathogens and Disease, 2006, 3(4): 355-365

[57] Wu N, Qiao M, Zhang B, et al. Abundance and diversity of tetracycline resistance genes in soils adjacent to representative swine feedlots in China [J]. Environmental Science & Technology, 2010, 44(18): 6933-6939

[58] Jaglic Z, Vlkova H, Bardon J, et al. Distribution, characterization and genetic bases of erythromycin resistance in Staphylococci and Enterococci originating from livestock [J]. Zoonoses Public Health, 2012, 59(3): 202-211

[59] Kotzamanidis C, Zdragas A, Kourelis A, et al. Characterization of vanA-type Enterococcus faecium isolates from urban and hospital wastewater and pigs [J]. Journal of Applied Microbiology, 2009, 107(3): 997-1005

[60] Chénier M R, Juteau P. Fate of chlortetracycline- and tylosin-resistant bacteria in an aerobic thermophilic sequencing batch reactor treating swine waste [J]. Microbial Ecology, 2009, 58(1): 86-97

[61] Nemeghaire S, Argudín M, Haesebrouck F, et al. Epidemiology and molecular characterization of methicillin-resistant Staphylococcus aureus nasal carriage isolates from bovines [J]. BMC Veterinary Research, 2014, 10(1): 153

[62] Kanwar N, Scott H M, Norby B, et al. Impact of treatment strategies on cephalosporin and tetracycline resistance gene quantities in the bovine fecal metagenome [J]. Scietific Report, 2014, 4: 5100

[63] Graves A K, Liwimbi L, Israel D W. Distribution of ten antibiotic resistance genes in E . coli isolates from swine manure, lagoon effluent and soil collected from a lagoon waste application field [J]. Folia Microbiologica, 2011, 56(2): 131-137

[64] Morales A S, Fragoso de Araújo J, de Moura Gomes V T, et al. Colistin resistance in Escherichia coli and Salmonella enterica strains isolated from swine in Brazil [J]. The Scientific World Journal, 2012, 2012: 109795

[65] Jensen V F, Jakobsen L, Emborg H D, et al. Correlation between apramycin and gentamicin use in pigs and an increasing reservoir of gentamicin-resistant Escherichia coli [J]. Journal of Antimicrobial Chemotherapy, 2006, 58(1): 101-107

[66] Horton R A, Randall L P, Snary E L, et al. Fecal carriage and shedding density of CTX-M extended-spectrum β -lactamase-producing Escherichia coli in cattle, chickens, and pigs: Implications for environmental contamination and food production [J]. Applied and Environmental Microbiology, 2011, 77(11): 3715-3719

[67] Endimiani A, Rossano A, Kunz D, et al. First countrywide survey of third-generation cephalosporin-resistant Escherichia coli from broilers, swine, and cattle in Switzerland [J]. Diagnostic Microbiology and Infectious Disease, 2012, 73(1): 31-38

[68] Jones-Dias D, Manageiro V, Francisco A P, et al. Assessing the molecular basis of transferable quinolone resistance in Escherichia coli and Salmonella spp. from food-producing animals and food products [J]. Veterinary Microbiology, 2013, 167(3-4): 523-531

[69] Molla B, Miko A, Pries K, et al. Class 1 integrons and resistance gene cassettes among multidrug resistant Salmonella serovars isolated from slaughter animals and foods of animal origin in Ethiopia [J]. Acta Tropica, 2007, 103(2): 142-149

[70] Chapman J S. Disinfectant resistance mechanisms, cross-resistance, and co-resistance [J]. International Biodeterioration and Biodegradation, 2003, 51(4): 271-276

[71] Rahube T O, Yost C K. Characterization of a mobile and multiple resistance plasmid isolated from swine manure and its detection in soil after manure application [J]. Journal of Applied Microbiology, 2012, 112(6): 1123-1133

[72] Binh C T T, Heuer H, Kaupenjohann M, et al. Piggery manure used for soil fertilization is a reservoir for transferable antibiotic resistance plasmids [J]. FEMS Microbiology Ecology, 2008, 66(1): 25-37

[73] Agers? Y, Sandvang D. Class 1 integrons and tetracycline resistance genes in Alcaligenes , Arthrobacter , and Pseudomonas spp. isolated from pigsties and manured soil [J]. Applied and Environmental Microbiology, 2005, 71(12): 7941-7947

[74] Zhang X Y, Ding L J, Yue J. Occurrence and characteristics of class 1 and class 2 integrons in resistant Escherichia coli isolates from animals and farm workers in Northeastern China [J]. Microbial Drug Resistance, 2009, 15(4): 323-328

[75] Silveira E, Freitas A R, Antunes P, et al. Co-transfer of resistance to high concentrations of copper and first-line antibiotics among Enterococcus from different origins (humans, animals, the environment and foods) and clonal lineages [J]. Journal of Antimicrobial Chemotherapy, 2014, 69(4): 899-906

[76] Hasman H, Aarestrup F M. The tcrB gene conferring transferable copper resistance in Enterococcus faecium : Occurrence, transferability, and linkage to macrolide and glycopeptide resistance [J]. Antimicrobial Agents and Chemotherapy, 2002, 46(5): 1410-1416

[77] Amachawadi R G, Scott H M, Alvarado C, et al. Occurrence of the transferable copper resistance gene tcrB among fecal Enterococci of U.S. feedlot cattle fed copper-supplemented diets [J]. Applied and Environmental Microbiology, 2013, 79(14): 4369-4375

[78] Cavaco L M, Hasman H, Aarestrup F M. Zinc resistance of Staphylococcus aureus of animal origin is strongly associated with methicillin resistance [J]. Veterinary Microbiology, 2011, 150(3-4): 344-348

[79] Chen B, Zheng W, Yu Y, et al. Class 1 integrons, selected virulence genes, and antibiotic resistance in Escherichia coli isolates from the Minjiang River, Fujian Province, China [J]. Applied and Environmental Microbiology, 2011, 77(1): 148-155

[80] Smet A, Rasschaert G, Martel A, et al. In situ ESBL conjugation from avian to human Escherichia coli during cefotaxime administration [J]. Journal of Applied Microbiology, 2011, 110(2): 541-549

[81] You Y, Silbergeld E K. Learning from agriculture: Understanding low-dose antimicrobials as drivers of resistome expansion [J]. Frontiers in Microbiology, 2014, 5: 1-10

[82] Jacobsen C S, Bech T B. Soil survival of Salmonella and transfer to freshwater and fresh produce [J]. Food Research International, 2012, 45(2): 557-566

[83] Piorkowski G S, Bezanson G S, Jamieson R C, et al. Effect of hillslope position and manure application rates on the persistence of fecal source tracking indicators in an agricultural soil [J]. Journal of Environmental Quality, 2014, 43(2): 450-458

[84] Wang H, Zhang T, Wei G, et al. Survival of Escherichia coli O157: H7 in soils under different land use types [J]. Environmental Science and Pollution Research International, 2014, 21(1): 518-524

[85] Cook K L, Netthisinghe A M P, Gilfillen R A. Detection of pathogens, indicators, and antibiotic resistance genes following land application of poultry litter [J]. Journal of Environmental Quality, 2014, 10(6): 42104

[86] Bech T B, Rosenbom A E, Kjaer J, et al. Factors influencing the survival and leaching of tetracycline-resistant bacteria and Escherichia coli through structured agricultural fields [J]. Agriculture, Ecosystems and Environment, 2014, 195: 10-17

[87] Chee-Sanford J C, Amniov R I, Krapac I J, et al. Occurrence and diversity of tetracycline resistance genes in lagoons and groundwater underlying two swine production facilities occurrence and diversity of tetracycline resistance genes in lagoons and groundwater underlying two swine production facilities [J]. Applied and Environmental Microbiology, 2001, 67(4): 1494-1502

[88] Yang Q, Ren S, Niu T, et al. Distribution of antibiotic-resistant bacteria in chicken manure and manure-fertilized vegetables [J]. Environmental Science and Pollution Research, 2014, 21(2): 1231-1241

[89] Hofmann A, Fischer D, Hartmann A, et al. Colonization of plants by human pathogenic bacteria in the course of organic vegetable production [J]. Frontiers in Microbiology, 2014, 5: 1-11

[90] Reuland E A, Al Naiemi N, Raadsen S A, et al. Prevalence of ESBL-producing Enterobacteriaceae in raw vegetables [J]. European Journal of Clinical Microbiology & Infectious Diseases, 2014, 33: 1843-1846

[91] Marti R, Scott A, Tien Y C, et al. Impact of manure fertilization on the abundance of antibiotic-resistant bacteria and frequency of detection of antibiotic resistance genes in soil and on vegetables at harvest [J]. Applied and Environmental Microbiology, 2013, 79(18): 5701-5709

Veterinary Antibiotics Use, Occurrence of Antibiotic Resistance Pathogen and Its Antibiotic Resistance Genes in Animal Production: An Overview

Sui Qianwen1, Zhang Junya1, Wei Yuansong1,3,*, Chen Meixue1, Dong Hongmin2, Xiong Jihai3

1. State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China 2. Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China 3. Institute of Energy, Jiangxi Academy of Sciences, Nanchang 330096, China

Veterinary antibiotics play an important role in animal growth promotion and disease control in food-animal production. Over a half of total antibiotics is used in animal industry. Antibiotic resistance bacteria (ARB), antibiotic resistance genes (ARGs) and their spread risk caused by the animal industry have drawn widely attention. China is the biggest country of animal industry and veterinary antibiotics consumption in the world, but many gaps exist about veterinary antibiotics use, antibiotic resistance level of pathogens and their carried ARGs, which are difficult for the control of antibiotic resistance pathogens and its spread risk. Through literature review, the veterinary antibiotic use of China and other developed countries were summarized, the AR level of pathogenic bacteria and the carried ARGs, mobile genetic elements, as well as the spread risk of AR pathogenic bacteria to environment were analyzed. Therefore the purposes of this paper are to provide support for improving rational drug use and reducing the spread risk of antibiotic resistance pathogens, and establishing the linkage of antibiotic resistance pollution from animal production to public environment.

veterinary antibiotics; heavy metal; antibiotic resistance pathogenic bacteria; antibiotic resistance genes; mobile genetic element

公益性行業(農業)科研專項經費課題(No. 201303091);國家“水體污染控制與治理”科技重大專項課題(2012ZX07202-005;2015ZX07203-007);江西省科學院省院協同創新團隊(2014-SYXTCX-02);國家自然科學基金(No. 41501513);國家自然科學基金(No. 21577161)

隋倩雯(1986-),女,博士后,研究方向為畜禽養殖廢水生物處理及抗性基因減控,E-mail:suiqianwen@163.com;

*通訊作者(Corresponding author), E-mail: yswei@rcees.ac.cn

10.7524/AJE.1673-5897.20150922001

2015-09-22錄用日期:2015-10-21

1673-5897(2015)5-020-15

X171.5

A

魏源送(1969—),男,環境工程博士,研究員,研究方向污水處理與再生利用、污泥處理與資源化、抗生素抗性基因的轉歸與控制,已在國內外刊物發表學術論文130余篇。

隋倩雯, 張俊亞,魏源送,等.畜禽養殖過程抗生素使用與耐藥病原菌及其抗性基因賦存的研究進展[J]. 生態毒理學報,2015, 10(5): 20-34

Sui Q W, Zhang J Y, Wei Y S, et al. Veterinary antibiotics use, occurrence of antibiotic resistance pathogen and its antibiotic resistance genes in animal production: An overview[J]. Asian Journal of Ecotoxicology, 2015, 10(5): 20-34 (in Chinese)

猜你喜歡
耐藥
如何判斷靶向治療耐藥
保健醫苑(2022年5期)2022-06-10 07:46:38
Ibalizumab治療成人多耐藥HIV-1感染的研究進展
miR-181a在卵巢癌細胞中對順鉑的耐藥作用
鉑耐藥復發性卵巢癌的治療進展
超級耐藥菌威脅全球,到底是誰惹的禍?
科學大眾(2020年12期)2020-08-13 03:22:22
嬰幼兒感染中的耐藥菌分布及耐藥性分析
云南醫藥(2019年3期)2019-07-25 07:25:10
念珠菌耐藥機制研究進展
耐藥基因新聞
無縫隙管理模式對ICU多重耐藥菌發生率的影響
PDCA循環法在多重耐藥菌感染監控中的應用
主站蜘蛛池模板: 色久综合在线| 国产jizz| 国产一级裸网站| 尤物在线观看乱码| 人妻中文字幕无码久久一区| 午夜视频在线观看免费网站| 97狠狠操| 国产精品99久久久久久董美香| 亚洲视频三级| 色妞www精品视频一级下载| 欧美精品成人一区二区在线观看| 欧美成人精品欧美一级乱黄| 国产屁屁影院| 精品久久蜜桃| 欧美无遮挡国产欧美另类| 亚洲精品国产综合99久久夜夜嗨| 日韩精品亚洲人旧成在线| 国产精品xxx| 欧美激情二区三区| 日韩欧美国产精品| 成人在线综合| 极品私人尤物在线精品首页| 亚洲无码A视频在线| 国产91透明丝袜美腿在线| 亚洲国产系列| 亚洲成综合人影院在院播放| 99精品久久精品| 国产自产视频一区二区三区| 秋霞一区二区三区| 国产亚洲成AⅤ人片在线观看| 亚洲福利片无码最新在线播放| 日韩无码黄色网站| 亚洲中文字幕手机在线第一页| 免费国产一级 片内射老| 亚洲国产中文精品va在线播放 | 国产制服丝袜91在线| 538国产在线| 国产精品偷伦在线观看| av手机版在线播放| 国产综合色在线视频播放线视 | 国内精品自在欧美一区| 国产成人禁片在线观看| 国产91丝袜在线播放动漫| 国产乱人伦AV在线A| 亚洲无码精彩视频在线观看| 中文字幕日韩久久综合影院| 国内精自视频品线一二区| 亚洲专区一区二区在线观看| 99ri精品视频在线观看播放| 亚洲最新地址| 红杏AV在线无码| 中文字幕中文字字幕码一二区| 中国毛片网| 91精品国产91久久久久久三级| 国产91丝袜在线观看| 国产女人在线观看| 日韩av手机在线| 亚洲男人的天堂在线观看| 欧美一区二区啪啪| 国产三区二区| 亚洲综合极品香蕉久久网| 视频国产精品丝袜第一页| 亚洲第一国产综合| 国产小视频a在线观看| 中文成人在线视频| 久久精品人人做人人爽97| 韩国v欧美v亚洲v日本v| 欧美无专区| 中文字幕在线播放不卡| 成人欧美日韩| 狠狠亚洲五月天| 97精品伊人久久大香线蕉| a级毛片在线免费观看| 国产精选小视频在线观看| 国产午夜一级毛片| 亚洲天堂精品视频| 天天操精品| 无码网站免费观看| 日韩国产黄色网站| 国产精品区网红主播在线观看| 第一页亚洲| 久久 午夜福利 张柏芝|