999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

A Rem ark on the Level Sets of the G raph of Harm onic Functions Bounded by Tw o Circles in Parallel Planes

2015-03-29 08:26:08KONGShengliXUJinju2DepartmentofMathematicsUniversityofScienceandTechnologyofChinaHefei230026China
Journal of Partial Differential Equations 2015年3期

KONG Shengli,XU Jinju2,?Department ofM athematics,University ofScienceand Technology ofChina, Hefei230026,China.

2Department ofM athematics,ShanghaiUniversity,Shanghai200444,China.

Received 14M arch 2015;A ccep ted 31 Ju ly 2015

A Rem ark on the Level Sets of the G raph of Harm onic Functions Bounded by Tw o Circles in Parallel Planes

KONG Shengli1,XU Jinju2,?1Department ofM athematics,University ofScienceand Technology ofChina, Hefei230026,China.

2Department ofM athematics,ShanghaiUniversity,Shanghai200444,China.

Received 14M arch 2015;A ccep ted 31 Ju ly 2015

.In thispaper,w e find tw o auxiliary functionsandm akeuseof them axim um p rincip le to study the level sets o f harm onic function defined on a convex ring w ith hom ogeneous Dirich let boundary cond itions in R2.In higher dim ensions,w e also have a sim ilar resu lt to Jagy’s.

Harm onic function;m axim um p rincip le;level set.

1 In troduction

Thegeom etry of the levelsetsof the solutionsofellip tic partial d ifferentialequations isa classicalsubject.For instance,Ahlfors[1]contains thew ell-know n result that levelcu rves of the Green function on a sim p ly connected convex dom ain in the p lane are convex Jordan cu rves.Motivated by catenoid or the ”Riem ann Stair-case” in m inim al surface theory,in 1956,Shiffm an[2]p roved the follow ing tw o resu lts:(i)if am inim al su rface S in R3is bounded by convex cu rves in parallel p lanes,and S is topologically an annu lus, then the intersections of S w ith allother parallel p lanes are also convex cu rves;(ii)if the boundariesare circles in parallelp lanes,then the intersectionsof S w ith allother parallel p lanesarealso circles.In 1957,Gabriel[3]p roved that the levelsetsof the Green function on a 3-d im ensional bounded convex dom ain are strictly convex.Later,in 1977,Lew is[4] extended Gabriel’s resu lt to p-harm onic functions in higher d im ensions.In 1990,Jagy[5]

Shiffm an used com p lex analysis to p rove the above result.In the p roof of case(i), Shiffm an introduced a cu rvatu re type function ψu(yù)(in page 80[2])of the level cu rve of them inim al su rfaces.He p roved that ψu(yù)isa harm onic function and it is non-negative if the level curvesare convex.In thep roofof case(ii),Shiffm an[2]introduced an im portant auxiliary function,now nam ed the Shiffm an function,w hich is a harm onic function on them inim al su rface.

Rem ark 1.1.In order to generalize the Shiffm an’s cu rvatu re type function ψu(yù)(see page 80 in[2])from m inim al surface to harm onic function,Talenti[7]got the follow ing resu lt. Suppose u is harm onic and has no critical points in a dom ain ? ? R2,K is the cu rvatu re of the level cu rves of u w ith respect to the norm ald irection ?u,defined as the follow ing then K/|?u|is a harm on ic function in ?.M ore recently,M a-Ou-Zhang[8]had generalized theabove resu lt to high d im ension harm onic function.

In this paper,for the harm onic function defined on p lane dom ain,w e find tw o harm onic functions correspond ing to Shiffm an function.Now w e state ou rm ain resu lt.

Theorem 1.1.Letu satisfy

where ?0and ?1arebounded smooth convex domains in R,and ?1??0,K is the curvature of the level curves ofu defined as in(1.1).Then

(i) ? =|?u|?3(K1u2?K2u1)isaharmonic function in ?.

(ii) ψ =|?u|?2K?1(K1u2?K2u1)satisfies the follow ing equation

where bi(i=1,2)are bounded continuous functions.

Corollary 1.1.Asa consequenceofTheorem 1.1,since(K1u2?K2u1)isthetangentialderivative of the curvature K of the level sets ofu on its level set,from themaximum principle,w e have if??0and ??1are circles,then the intermediate cross-sectionsmustbe circles.And w e have the follow ing correspond ing to the Jagy’s Theorem 1.1 in[5]to high d im ension harm onic functions.

Corollary 1.2.Letu satisfy

where ?0and ?1arebounded smooth convex domains in Rn(n ≥3).If??0and ??1are spheres and ifall the levelsurfaces ofu are spheres,then thegraph ofu isrotationally symmetric aboutan axiscontaining thecentersofall thespheres,so ?0and ?1mustbe theballsw ith thesamecenter.

The paper is organized as follow s.In Section 2,w e w ill com p lete the proof of Theorem 1.1.Then w e prove Corollary 1.2 in Section 3.In thep roofof Theorem 1.1,w euse the usual Euclidean coord inate to com p lete the calcu lation,certain ly w e can use the sim ilar com p lex analysism ethod as in Shiffm an[2]and Talenti[7].

2 Proof of Theorem 1.1

Shiffm an[2]introduced an im portantauxiliary function,now nam ed the Shiffm an function(see the form u la(8)in page 79,the function β in[2]),w hich is a harm onic function. In this section,w e find the correspond ing harm onic function ? for 2-d im harm onic function.M oreover w e also get the new function ψ.In Theorem 1.1,the norm al d irection o f the level sets of u is ?u,so(K1u2?K2u1)is the tangential derivative of the cu rvatu re K of the levelsetsof u on its levelset.By the classical resu lt in[9],the cu rvature K is strictly positive.

Proof.Setting

w e on ly need to prove the follow ing equality for suitable choice of b,c,

To p rove(2.1)at an arbitrary poin t x0∈ ?,w e m ay choose the coord inate such that u1(x0)=0 and u2(x0)=|?u|> 0.If w e can establish(2.1)at x0under the above assum p tions,then going back to the original coord inate,w e find that(2.1)rem ains valid.

Thus it su ffi ces to estab lish(2.1)under the above assum p tions.Denote by

Therefore

Differentiating the Eq.(2.3),w e have

Differentiating the Eq.(2.4),w e get

Pu tting(2.3)-(2.4)in to(2.5),w e have

w here

Du ring the follow ing calculation,w eoften app ly the follow ing form u las:

We shall com p lete the com pu tation in three steps.

Step 1:We fi rst calcu late I1and shall get the form u la(2.11).Firstly,w e calcu late the follow ing form u las.

So w e have

App lying(2.7)-(2.10),w e get

Step 2:We com pute I2and shallget the form u la(2.18).Taking the fi rstderivativesof (2.2),w e have

So by(2.7)and(2.12),w e obtain

Taking the second derivativesof(2.2),

By(2.14),w e also get

From(2.9),(2.13)and(2.16),w e have

Using(2.7)and(2.17),it follow s that

Step 3:Wew ill calcu late I3and get the form u la(2.24).Taking the third derivative of(2.2) and using(2.14),w e have

w here

Using(2.7)-(2.8)and(2.13),w eget

From(2.15),w e obtain

Using(2.7)-(2.10)and(2.17),it follow s that

App lying(2.19)-(2.21),w eobtain

Since

from(2.22)-(2.23),w e have

By(2.17),w e obtain

Therefore,by(2.11),(2.18),(2.24)and(2.25),w e get

Now w divide two casesaccord ing to the d ifferent choicesof b,c.

Case I:Let b=0,c=3.For ? =|?u|?3(K1u2?K2u1),it follow s that

Case II:From(2.4),w e have

Then pu t the form u la(2.28)into(2.26),w eobtain

Let b= ?1,c=2.It follow s that

satisfi es the follow ing equation

w here bi(i=1,2)are bounded continuous functions.Hence,w e com p lete the p roof of Theorem 1.1.

3 The Proof of Corollary 1.2

In this section,asm otivated by the Jagy’s[5]theorem on m inim al su rfaces,w e give the correspond ing resu lt for harm onic function in high d im ension dom ain.Ou r p roof follow s Jagy’s[5]p roofonm inim alsu rfaces.The key poin tof Jagy’s proofw as the resu ltof Schoen[10]that is based on them axim um p rincip le for ellip tic d ifferentialequations.As inm inim alsu rface,p lease see Theorem 2 in Schoen[10],essentially w e know theboundary B of the graph of the harm onic function in Rn+1enjoys som e reflection symm etries, so does the graph of theharm onic function itself.

Proof.Let M ? Rn+1be the graph of the harm onic function u in ? ? Rn.For hyperp lanes π0={xn+1=0}and π1={xn+1=1}that intersect M.We can arrange that the centers o f both the spheres M Tπ0and M Tπ1lie in the x1xn+1p lane.

We need to show that the center of every parallel spherical cross-section lies in the x1xn+1p lane.We consider B=(π0T M)S(π1

T M)to be the boundary of the subset of M lying betw een the tw o p lanes π0and π1.B is invariant under each of the refl ections x2→ ?x2,...,xn→ ?xn.As Schoen’s Theorem 2 in[10],M itself inherits these refl ection symm etries.We conclude that all of M does indeed inherit the symm etriesm entioned. In particu lar,the cen ter ofevery spherical cross-section of M lies in the sam e2-p lane,that w here x2=0,...,xn=0.

Since u=u(x1,...,xn),w e need tw o functions o f u,r(u)and c(u),to denote(resp.)the rad ius and the x1coord inate of the cen ter of the sphere in hyperp lane xn+1=u.M is the setof poin tsw here

Next,w e need to calcu late Δu.Firstly,taking the fi rst and second derivatives of(3.1)to x1,xi(i≥ 2)respectively,w e have

and

So w e obtain

The functions r,c,r′,c′,r′′,c′′are functions o f u=xn+1on ly,or(m ore to the point)have constant values on any fixed p lane xn+1=u.We m ay therefore exam ine the values o fthese functions at d ifferent locations in M and find equations that hold sim u ltaneously. In particu lar,ifw eevaluate theequation thatdescribesm inim ality along the threesubsets of M w herein

w eget the follow ing three(sligh tly rearranged)equations:

Taking half the sum of the fi rst tw o equations,w e have

Subtracting the third equation,w e fi nally obtain

Since n≥3,w e conclude that c(u)isconstan tand hence M isahypersurfaceof revolu tion.

This com p letes the p roofof Corollary 1.2.

Acknow ledgem en t

Theauthorsw ou ld like to thank Prof.Xi-Nan M a forsuggesting this problem and help fu l d iscussions.The au thors also w ou ld like to thank Prof.Xu-Jia Wang to comm unicate w ith us the possibility of Corollary 1.2 in Ju ly 2012.

[1]Ah lfors L.V.,Con form al invarian ts:top ics in geom etric function theory,M cG raw-H ill Series in H igher M athem atics.M cGraw-H ill Book Co.,New York-Dsseldorf-Johannesbu rg,1973, 5-6.

[2]Shiffm an M.,On su rfaces of stationary area bounded by tw o circles or convex cu rves in parallelp lanes.AnnalsofM ath.63(1956),77-90.

[3]Gab riel R.,A resu lt concerning convex level su rfaces o f 3-d im ensional harm onic functions. J.London Math.Soc.32(1957),286-294.

[4]Lew is J.L.,Capacitary functions in convex rings.Arch.RationalM ech.Anal.66(1977),201-224.

[5]JagyW.,M inim alhypersu rfaces foliated by spheres.M ichigan Math.J.38(1991),255-270.

[6]Korevaar N.J.,Convexity of level sets for solu tions to ellip tic ring p roblem s.Comm.Partial DifferentialEquations.15(4)(1990),541-556.

[7]Talen tiG.,On functions w hose lines of steepest descen t bend p roportionally to level lines. Ann.ScuolaNorm.Sup.Pisa Cl.Sci.10(4)(1983),587-605.

[8]Ma Xi-Nan,Ou Qianzhong and Zhang Wei,Gaussian cu rvature estim ates for the convex level sets of p-harm onic functions.Comm.Pure Appl.M ath.63(7)(2010),935-971.

[9]Kaw oh l B.,Rearrangem entsand convexity o f levelsets in PDE.LectureNotes in M athematics, 1150.Sp ringer-Verlag,Berlin,1985,1-134.

[10]Schoen R.,Uniqueness,symm etry,and em beddedness ofm inim al surfaces.J.Differential Geom.18(1983),791-809.

?Correspond ing au tho r.Emailaddresses:kongs@ust c.edu.cn(S.L.Kong),j j xujane@shu.edu.cn(J.J.Xu)

AMSSub ject Classifi cations:35B45,35J92,35B50

Chinese Library Classifi cations:O175.25


登錄APP查看全文

主站蜘蛛池模板: 久久精品视频亚洲| 日本黄色不卡视频| 美女被躁出白浆视频播放| 草草线在成年免费视频2| 成人中文字幕在线| 欧美成人精品欧美一级乱黄| 中文无码精品A∨在线观看不卡| 香蕉视频在线观看www| 亚洲免费播放| 亚洲高清在线天堂精品| 亚洲性网站| 亚洲精品国产综合99久久夜夜嗨| 国产欧美专区在线观看| 在线观看国产精品日本不卡网| 国产在线麻豆波多野结衣| 久久综合五月| 日韩欧美国产另类| 亚洲性一区| 国产精品漂亮美女在线观看| 国产一级精品毛片基地| 日韩av手机在线| 日本AⅤ精品一区二区三区日| 狠狠久久综合伊人不卡| 中国国产一级毛片| 久久国产成人精品国产成人亚洲| 国产在线观看99| 国产网站一区二区三区| 亚洲综合片| 国产男女免费完整版视频| 四虎永久在线| 最新国产在线| 久久大香香蕉国产免费网站| 午夜国产大片免费观看| 国产免费黄| 激情在线网| 国产精品永久在线| 免费观看精品视频999| 婷婷五月在线视频| 69免费在线视频| 久久精品视频亚洲| 国产无码精品在线播放| 亚洲日本一本dvd高清| 思思热精品在线8| 女人18一级毛片免费观看| 亚洲色图狠狠干| 国产AV无码专区亚洲A∨毛片| 91精品国产91欠久久久久| 美女免费精品高清毛片在线视| 国产美女主播一级成人毛片| 在线精品欧美日韩| 亚洲国产在一区二区三区| 午夜国产精品视频| 五月天久久婷婷| 成人亚洲国产| 国产最新无码专区在线| 一级黄色片网| 久久婷婷五月综合色一区二区| 91在线日韩在线播放| 亚洲人成网站观看在线观看| 99r在线精品视频在线播放| 久青草网站| 亚洲国产精品国自产拍A| 一级毛片在线播放| yjizz国产在线视频网| 澳门av无码| 欧美成人怡春院在线激情| 色香蕉网站| 激情六月丁香婷婷| 国产综合在线观看视频| 国产精品久久久久久搜索| 国产高清无码第一十页在线观看| 精品国产免费第一区二区三区日韩| 久久夜色精品| 成人免费视频一区| 久久无码av一区二区三区| 亚洲一区无码在线| 精品人妻一区二区三区蜜桃AⅤ| 成人午夜免费观看| 婷婷在线网站| 她的性爱视频| 国产精品hd在线播放| 一级毛片在线播放免费|