999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Rem arkson Liouville Type Resu lt for the 3D Hall-M HD System

2015-03-29 08:26:26ZHANGZujinYANGXianandQIUShulinSchoolofMathematicsandComputerSciencesGannanNormalUniversity
Journal of Partial Differential Equations 2015年3期

ZHANG Zu jin,YANG Xianand QIU Shu linSchoolofMathematicsand ComputerSciences,Gannan NormalUniversity,

Ganzhou 341000,China.

2Foreign LanguageDepartment,Ganzhou TeachersCollege,Ganzhou 341000,China. Received 17M ay 2015;Accep ted 31 Ju ly 2015

Rem arkson Liouville Type Resu lt for the 3D Hall-M HD System

ZHANG Zu jin1,?,YANG Xian2and QIU Shu lin11SchoolofMathematicsand ComputerSciences,Gannan NormalUniversity,

Ganzhou 341000,China.

2Foreign LanguageDepartment,Ganzhou TeachersCollege,Ganzhou 341000,China. Received 17M ay 2015;Accep ted 31 Ju ly 2015

.In this paper,w e consider the 3D Hall-M HD system,and p rovide an imp roved Liouv ille type resu lt for its stationary version.

Hall-MHD system;Liouville theorem.

1 In troduction

This paper concerns itselfw ith the th ree-d im ensional(3D)Hall-m agnetohyd rodynam ics system(Hall-MHD):

w here u is fl uid velocity field,B is them agnetic field,and π is a scalar p ressu re.We p rescribe the initialdata to satisfy the cond ition

The fi rst system atic study of the Hall-MHD system is p ioneered by Ligh thill[1]follow ed by Cam pos[2].Com paring w ith the usualMHD equations,the Hall-MHD systemhas the Hall term ?×[(? × B)× B]in(1.1)3,w hichm ay becom e signifi cant for such p roblem s asm agnetic reconnection in geo-dynam o[3],star form ation[4,5],neu tron stars[6] and space p lasm as[7,8].

Mathem atically,the Hall-MHD system can be derived from either tw o-fl uids or kineticm odels(see[3]),and the global existence of w eak solu tions,local existence and uniquenessof sm ooth solu tions,blow-up criteria and sm alldata globalexistenceof classical so lu tions w ere established in[9,10].For the fractional Hall-M HD,the reader is referred to[11].

The stationary version of(1.1)is

And in[9],theauthorsestablished the follow ing Liouville type theorem.

Theorem 1.1.([9])Let u,B be C2(R3)solutions to(1.3)satisfying

Then wehave u=B=0.

It isnotnatu ral to assum e that theboundednessof the solu tion u,B(see[12,13]),and the aim of this paper is to im proving Theorem 1.1 as

Theorem 1.2.Let u,B be C2(R3)solutions to(1.3)satisfying

Then wehave u=B=0.

2 Proof of Theorem 1.2

In th is section,w e shall p rove Theorem 1.2.

We fi rst derive an estim ate o f the p ressure.Taking the d ivergence o f(1.3)1,and using the vector iden tity

w e obtain

Classical ellip tic regu larity resu lts then yields

and 0 ≤ σ(|x|)≤ 1 for 1 < |x|< 2.For each R > 0,define σR(x)= σ(|x|/R),x ∈ R3.

Taking the inner p roduct of(1.3)1w ith uσR,(1.3)3w ith BσRin L2(R3),add ing the resu lting equations together,and in tegrating by parts,w e obtain

Now,consider a standard rad ial cu t-off function σ ∈ Cc∞(R3)such that

We successively estim ate Iifor i=1,2,···,7.For I1,H¨older inequality im p lies

For I2,w e invoke(2.1)to deduce

Then for I3,by Sobolev im bedd ing theorem,

The term I4can be sim ilarly estim ated as I1,

Exactly asestim ate for I3,w em ay dom inate I5,

Finally,w em ay bound I6and I7sim ultaneously as

Therefore,passing R → ∞ in(2.2),w e get

Levi’sm onotone convergence theorem then yields

Consequen tly,u,B are constantvector,and both are zero due to the fact that u,B∈ L92(R3).

The p roo f of Theorem 1.2 is com p lete.

A cknow ledgem en ts

Thisw orkw as partially supported by the Natu ral Science Foundation of JiangxiProvince (20151BAB201010).

[1]Lighthill M.J.,Studies on m agneto-hyd rodynam ic w aves and other anisotrop ic w avem otions.Philos.Trans.R.Soc.Lond.Ser.A,252(1960),397-430.

[2]Cam pos L.M.B.C.,On hyd rom agnetic w aves in atm ospheres w ith ap p lication to the sun. Theor.Comput.Fluid Dyn.,10(1998),37-70.

[3]Acheritogaray M.,Degond P.,Frouvelle A.,Liu J.G.,Kinetic form u lation and global existence for the Hall-M agento-hyd rodynm ics system s.Kinet.Relat.M odels,4(2011),901-918.

[4]Balbus S.A.,Terquem C.,Linear analysiso f the halleffect in p rotosteller disks.Astrophys.J., 552(2001),235-247.

[5]Ward leM.,Star form ation and the Halleffect.Astrophys.SpaceSci.,292(2004),317-323.

[6]Shalybkov D.A.,Urp in V.A.,The Halleffectand the decay ofm agnetic fields.Astron.Astrophys.,321(1997),685-690.

[7]Fo rbes T.G.,M agnetic reconnection in solar fl ares.Geophys.Astrophys.Fluid Dyn.,62(1991), 15-36.

[8]Hom ann H.,Grauer R.,Bifurcation analysiso fm agnetic reconnection in Hall-MHD sytsem s. Phys.D,208(2005),59-72.

[9]Chae D.,Degond P.,Liu J.G.,Well-posedness for Hall-m agnetohyd rodynam ics.Ann.I.H. Poincar′e-AN,31(2014),555-565.

[10]Chae D.,Lee J.,On the blow-up criterion and sm all data g lobal existence for the Hallm agnetohyd rodynam ics.J.D ifferential Equations,256(2014),3835-3858.

[11]Chae D.,Wu J.H.,Localw ell-posedness for the Hall-MHD equationsw ith fractionalm agnetic d iffusion.subm itted for publication.A lso posted in arXiv:1404.0486[m ath.AP]2 Ap r 2014.

[12]Chae D.,Rem arkson the Liouv ille type resu lts for the com p ressible N av ier-Stokesequations in RN.Nonlinearity,25(2012),1345-1349.

[13]LiD.,Yu X.W.,On som e Liouville type theorem s for the com p ressib le Navier-Stokesequations.Discrete Contin.Dyn.Syst.,34(2014),4719-4733.

[14]Beir?ao da Veiga H.,A new regu larity class for the Navier-Stokes equations in Rn.Chinese Ann.M ath.Ser.B,16(1995),407-412.

[15]Berselli L.C.,On a regu larity criterion for the 3D Navier-Stokesequations.Differential IntegralEquations,15(2002),1129-1137.

[16]Duan H.L.,On regu larity criteria in term s of p ressure for the 3D viscous MHD equations. Appl.Anal.,91(2012),947-952.

[17]Eskau riaza L.,Ser¨egin G.A., ˇSver′ak V.,L3,∞-so lu tions of Nav ier-Stokesequations and backw ard uniqueness.Russ.M ath.Surv.,58(2003),no.2,211-250.

[18]He C.,Xin Z.P.,On the regu larity ofw eak solu tionsto them agnetohyd rod ynam ic equations. J.Differential Equations,213(2005,235-254.

[19]Kato T.,PonceG.,Comm utator estim atesand the Eu ler and Navier-Stokesequations.Comm. PureAppl.Math.,41(1988),891-907.

[20]M inini P.D.,G ′om ez D.O.,M ahajan S.M.,Dynam o action in m agnetohyd rodynam ics and Hallm agnetohyd rodynam ics.Astrophys.,587(2003),472-481.

[21]ProdiG.,Un teorem a d iunicit′a per le equazionid iNavier-Stokes.Ann.Mat.Pura Appl.,48 (1959),173-182.

[22]Serrin J.,On the interior regu larity o fw eak solutions of the Navier-Stokesequations.Arch. RationalM ech.Anal.,9(1962),187-195.

[23]Zhou Y.,On regu larity criteria in term s o f p ressu re for the Nav ier-Stokes equations in R3. Proc.Amer.M ath.Soc.,134(2006),149-156.

[24]Zhou Y.,Rem aks on regu larities for the 3D MHD equations.Discrete Contin.Dyn.Syst.,12 (2005),881-886.

?Correspond ing au thor.Emailaddresses:zhangzuj in361@163.com(Z.J.Zhang),yangxianxisu@163.com(X. Yang),qiushul in2003@163.com(S.L.Q iu)

AM SSub ject Classifi cations:35Q35,35B65

Chinese Library Classifi cations:O 175.29,O175.28


登錄APP查看全文

主站蜘蛛池模板: 国产成人高精品免费视频| 狠狠亚洲五月天| 538国产视频| 青青青视频91在线 | 亚洲精品无码成人片在线观看| 国产福利不卡视频| 亚洲成a人片在线观看88| 亚洲永久免费网站| 欧美日韩精品在线播放| 亚洲精品视频免费| 色综合成人| 91精品网站| 成人福利在线观看| 亚洲第一色网站| 亚洲一区第一页| 在线观看免费人成视频色快速| 高h视频在线| 在线无码av一区二区三区| 久久精品国产91久久综合麻豆自制| 久久77777| 亚洲日韩AV无码一区二区三区人 | 在线欧美国产| 国产综合色在线视频播放线视| 国产成人高精品免费视频| 欧美伊人色综合久久天天| 2018日日摸夜夜添狠狠躁| 波多野结衣一区二区三区四区视频 | 天天色天天操综合网| 国产主播一区二区三区| 亚洲婷婷丁香| 亚洲精品大秀视频| 亚洲Av综合日韩精品久久久| 97超爽成人免费视频在线播放| 多人乱p欧美在线观看| 亚洲男人的天堂在线| 亚洲激情区| 欧美翘臀一区二区三区| 国产成人免费高清AⅤ| 国产成人午夜福利免费无码r| 亚洲伊人久久精品影院| 看你懂的巨臀中文字幕一区二区 | 五月天在线网站| 国产亚洲欧美另类一区二区| 亚洲国产综合第一精品小说| 日本午夜精品一本在线观看 | 综合色88| 久久精品无码中文字幕| 亚洲AV人人澡人人双人| 狠狠色丁香婷婷综合| 人妻丰满熟妇αv无码| 在线另类稀缺国产呦| 久久一级电影| 中国国产一级毛片| 亚洲国产一成久久精品国产成人综合| AV老司机AV天堂| 日韩福利在线观看| 国产麻豆精品手机在线观看| 日韩欧美在线观看| 亚洲香蕉久久| 国产成人一二三| 亚洲国产欧洲精品路线久久| 亚洲第一视频网站| 草草影院国产第一页| 伊人成人在线| 91网址在线播放| 欧美精品亚洲精品日韩专区va| 91精品情国产情侣高潮对白蜜| 国产成人h在线观看网站站| 2021国产在线视频| 欧美伦理一区| 色噜噜狠狠狠综合曰曰曰| 亚洲水蜜桃久久综合网站| 中国一级特黄视频| 亚洲va欧美va国产综合下载| 99这里精品| 欧美性色综合网| 一级毛片中文字幕| 成人午夜网址| 欧美日韩综合网| 伊人五月丁香综合AⅤ| 在线国产欧美| 全色黄大色大片免费久久老太|