999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

A New Jacobi Elliptic Function Expansion Method for Solving a Nonlinear PDE Describing Pulse Narrowing Nonlinear Transmission Lines

2015-03-30 08:47:36ZAYEDandALURRFI
Journal of Partial Differential Equations 2015年2期

ZAYED E.M.E.and ALURRFI K.A.E.

Department of Mathematics,Faculty of Science,Zagazig University,P.O.Box 44519, Zagazig,Egypt.

A New Jacobi Elliptic Function Expansion Method for Solving a Nonlinear PDE Describing Pulse Narrowing Nonlinear Transmission Lines

ZAYED E.M.E.?and ALURRFI K.A.E.

Department of Mathematics,Faculty of Science,Zagazig University,P.O.Box 44519, Zagazig,Egypt.

.In this article,we apply the first elliptic function equation to find a new kind of solutions of nonlinear partial differential equations(PDEs)based on the homogeneous balance method,the Jacobi elliptic expansion method and the auxiliary equation method.New exact solutions to the Jacobi elliptic functions of a nonlinear PDE describing pulse narrowing nonlinear transmission lines are given with the aid of computer program,e.g.Maple or Mathematica.Based on Kirchhoff’s current law and Kirchhoff’s voltage law,the given nonlinear PDE has been derived and can be reduced to a nonlinear ordinary differentialequation(ODE)using a simple transformation.The given method in this article is straightforward and concise,and can be applied to other nonlinear PDEs in mathematical physics.Further results may be obtained.

New Jacobi elliptic function expansion method;pulse narrowing nonlinear transmission lines;exact solutions;Kirchhoff’s current law;Kirchhoff’s voltage law.

1 Introduction

The nonlinear PDEs in mathematical physics are major subjects in physical science[1]. Exactsolutionsfor these equations play an importantrole in many phenomena in physics, such as fluid mechanics,hydrodynamics,optics,plasma physics and so on.Recently, many methods for finding these solutions have been presented,for example,tanh-sechmethod[2-4],extended tanh-method[5-7],sine-cosine method[8-10],homogeneous balance method[11,12],Jacobi elliptic function method[13-16],F-expansion method[17-19], exp-function method[20,21],trigonometric function series method[22],expansion method[23-27],the modified simple equation method[28-33],the modified mapping method[34],the firstintegralmethod[35-38],the multiple exp-function algorithm method [39,40],the transformed rationalfunction method[41],the Frobeniusdecomposition technique[42],the local fractional variation iteration method[43],the local fractional series expansion method[44]and so on.

The objective of this article is to use a new Jacobi elliptic function expansion method [45]to find the exactsolutions ofthe following nonlinear PDE describing pulse narrowing nonlinear transmission lines[46]:

whereV(x,t)is the voltage of the pulse andC0,L,δandb1are constants.The physical details of the derivation of Eq.(1.1)is elaborated in[46]using the Kirchhoff’s current law and Kirchhoff’s voltage law,which are omitted here for simplicity.It is well-known[46] that Eq.(1.1)has the solution:

wherevis the propagation velocity of the pulse andprovided thatv>v0.

This paper is organized as follows:In Sec.2,the description of a new Jacobi elliptic function expansion method is given.In Sec.3,we use the given method described in Sec. 2,to find exact solutions of Eq.(1.1).In Sec.4,the physical explanations of some results are presented.In Sec.5,some conclusions are obtained.

2 Description of a new Jacobielliptic function expansion method

Consider a nonlinear PDE in the form

whereV=V(x,t)is an unknown function,Pis a polynomial inV(x,t)and its partial derivatives in which the highest order derivatives and nonlinear terms are involved.Let us now give the main steps of the Jacobi elliptic function expansion method[45]:

Step 1.We look for the voltageV(x,t)of the pulse in the traveling form:wherevis the propagation velocity of the pulse,to reduce Eq.(2.1)to the following nonlinear(ODE):

whereHis a polynomial ofV(ξ)and its total derivativesV′(ξ),V′′(ξ),...and′=d/dξ.

Step 2.We suppose that the solution of Eq.(2.3)has the form:

wherez(ξ)satisfies the Jacobi elliptic equation:

Step 3.We determine the positive integerNin(2.4)by balancing the highest-order derivatives and the nonlinear terms in Eq.(2.3).

Step 4.Substituting(2.4)along with Eq.(2.5)into Eq.(2.3)and collecting all the coefficients ofthen setting them to zero,yield a set of algebraic equations.

Step 5.Solving the algebraic equations in Step 4,using the Maple or Mathematica to findg0,gi,fi,v,a,b,c.

Step 6.It is well-known[45]that Eq.(2.5)has many families of solutions as follows:

?

In this table,snξ=sn(ξ,m),cnξ=cn(ξ,m),dnξ=dn(ξ,m),nsξ=ns(ξ,m),csξ=cs(ξ,m),dsξ=ds(ξ,m),scξ=sc(ξ,m),sdξ=sd(ξ,m)are the Jacobi elliptic function with modulusm,where 0<m<1.These functions degenerate into hyperbolic functions whenm→1 as follows:

snξ→tanhξ,cnξ→sechξ,dnξ→sechξ,nsξ=cothξ,csξ=cschξ,dsξ=cschξ,scξ=sinhξ,sdξ=sinhξ,ncξ=coshξ,and into trigonometric functions whenm→0 as follows:

snξ→sinξ,cnξ→cosξ,dnξ→1,nsξ→cscξ,csξ→cotξ,dsξ→cscξ,scξ→tanξ,sdξ→sinξ,ncξ→secξ.

Also,these functions satisfy the following formulas:

and

sn′ξ=cnξdnξ,cn′ξ=?snξdnξ,dn′ξ=?m2snξcnξ,cd′ξ=?(1?m2)sdξndξ,ns′ξ=?csξdsξ,dc′ξ=(1?m2)ncξscξ,cn′ξ=scξdcξ,nd′ξ=m2cdξsdξ,sc′ξ=dcξncξ,cs′ξ=?nsξdsξ,ds′ξ=?csξnsξ,sd′ξ=ndξcdξ,where′=d/dξ.

Step 7.Substituting the solutions of Step 6,into(2.4)we have the exact solutions of Eq.(2.1).

3 Exact solutions of Eq.(1.1)using the given method in Sec.2

In this section,we apply the Jacobi elliptic function expansion method of Sec.2,to find the exact solutions of Eq.(1.1).To this end,we use the transformation(2.2)to reduce Eq. (1.1)to the following nonlinear ODE:

BalancingV′′withV2givesN=2.Therefore,(2.4)reduces to

whereg0,g1,f1,g2andf2are constants to be determined such that

Substituting(3.3)along with Eq.(2.5)into Eq.(3.1)and collecting all the coefficients ofzi(ξ),(i=0,1,...,8)and setting them to zero,we have the following algebraic equations:

On solving the above algebric equations(3.4)by Maple or Mathematica,we have the following results:

From(3.3)and(3.5),we get the exact solutions of Eq.(3.1)as follows:

whereb/=2c.

Sincea=c,we deduce from the table of Sec.2,the two cases:

Case 1.

Ifa=1/4,b=(1?2m2)/2,c=1/4 andz(ξ)=nsξ±csξorz(ξ)=snξ/(1±cnξ),then we get the Jacobi elliptic function solutions

respectively.

Ifm→1,thena=1/4,b=?1/2,c=1/4 andz(ξ)=coth(ξ)±csch(ξ)orz(ξ)=tanh(ξ)/ (1±sech(ξ))wherek1=?4.In this case,(3.7)and(3.8)reduce to the hyperbolic solutions

respectively.

Case 2.Ifa=(1?m2)/4,b=(1+m2)/2,c=(1?m2)/4 andz(ξ)=ncξ±scξorz(ξ)=cnξ/(1±snξ),then we get the Jacobi elliptic function solutions

respectively.

Ifm→1 thena=0,b=1,c=0 andz(ξ)=cosh(ξ)±sinh(ξ)orz(ξ)=sech(ξ)/(1±tanh(ξ)) wherek1=?4..In this case,(3.13)and(3.14)reduce to the hyperbolic solutions

respectively.

Remark 1.From Cases 1,2 we have shown that whenk1=?4,then we have the solution

With the aid of(3.2),we deduce that

which is equivalent to the well known(1.2)obtained in[46].

Remark 2.Eq.(3.1)can be solved using a direct method as follows:

Multiply Eq.(3.1)byV′(ξ)and integrate with zero constant of integration,we get

whereα=?k1,β=?2k2/3.

It is easy to get the solution

With the aid of(3.2),we deduce that

which is equivalent to the well known(1.2)obtained in[46].

3.1Physical explanations of some results

In this section,we have presented some graphs of the exact solutions(3.9),(3.12),(3.15) and(3.17)constructed by taking suitable values of involved unknown parameters to visualize the mechanism of the original Eq.(1.1).These solutions are kink,singular kinkshaped soliton solution,bell-shaped soliton solutions,singular bell-shaped soliton solutions and hyperbolic solutions.For more convenience the graphical representations of these solutions are shown in the following figures:

3.2Conclusions

In this article,we have solved the nonlinear PDE describing the pulse narrowing nonlinear transmission lines(1.1)using a new Jacobi elliptic function expansion method described in Sec.2.Families of exact solutions including Jacobi elliptic solutions,thedegenerated hyperbolic function solutions(whenm→1)of Eq.(1.1)have been found. Comparing our results obtained in this paper with the well-known results obtained in [46],we deduce that our results(3.20)and(3.23)are equivalent to the well known(1.2) obtained in[46]and the other solutions obtained in article are new and not found elsewhere.Using the Maple,we have shown that all solutions obtained in this article satisfy the original Eq.(1.1).A new Jacobi elliptic function expansion method used in this paper is effective in getting solutions and can be applied to explore the exact solutions of other nonlinear evolution equations in mathematical physics,which will be done in forthcoming papers.

[1]Ablowitz M.J.,Segur H.,Solitions and Inverse Scattering Transform,SIAM,Philadel-phia 1981.

[2]Malfliet W.,Solitary wave solutions of nonlinear wave equation.Am.J.Phys.60(1992),650-654.

[3]MalflietW.,Hereman W.,The tanh method:Exactsolutions of nonlinear evolution and wave equations.Phys.Scr.54(1996),563-568.

[4]Wazwaz A.M.,The tanh method for travelling wave solutions of nonlinear equations.Appl. Math.Comput.154(2004),714-723.

[5]EL-Wakil S.A.,Abdou M.A.,New exact travelling wave solutions using modified extented tanh-function method.Chaos Solitons Fractals31(2007),840-852.

[6]Fan E.,Extended tanh-function method and its applications to nonlinear equations.Phys. Lett.A277(2000),212-218.

[7]Wazwaz A.M.,The extended tanh method for abundantsolitary wave solutions ofnonlinear wave equations.Appl.Math.Comput.187(2007),1131-1142.

[8]Wazwaz A.M.,Exact solutions to the double sinh-Gordon equation by the tanh method and a variable separated ODE.method.Comput.Math.Appl.50(2005),1685-1696.

[9]Wazwaz A.M.,A sine-cosine method for handling nonlinear wave equations.Math.Comput. Modelling40(2004),499-508.

[10]Yan C.,A simple transformation for nonlinear waves.Phys.Lett.A224(1996)77-84.

[11]Fan E.,Zhang H.,A note on the homogeneous balance method.Phys.Lett.A246(1998), 403-406.

[12]Wang M.L.,Exct solutions for a compound KdV-Burgers equation.Phys.Lett.A213(1996), 279-287.

[13]Dai C.Q.,Zhang J.F.,Jacobian elliptic function method for nonlinear differential difference equations.Chaos Solutions Fractals27(2006),1042-1049.

[14]Fan E.,Zhang J.,Applications of the Jacobielliptic function method to special-type nonlinear equations.Phys.Lett.A305(2002),383-392.

[15]Liu S.,Fu Z.,Liu S.and Zhao Q.,Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations.Phys.Lett.A289(2001),69-74.

[16]Zhao X.Q.,Zhi H.Y.,Zhang H.Q.,Improved Jacobi-function method with symbolic computation to construct new double-periodic solutions for the generalized Ito system.Chaos Solitons Fractals28(2006),112-126.

[17]Abdou M.A.,The extended F-expansion method and its application for a class of nonlinear evolution equations.Chaos Solitons Fractals31(2007),95-104.

[18]Ren Y.J.,Zhang H.Q.,A generalized F-expansion method to find abundant families of Jacobi elliptic function solutions of the(2+1)-dimensionalNizhnik-Novikov-Veselov equation.Chaos Solitons Fractals27(2006),959-979.

[19]Zhang J.L.,Wang M.L.,Wang Y.M.and Fang Z.D.,The improved F-expansion method and its applications.Phys.Lett.A350(2006),103-109.

[20]He J.H.,Wu X.H.,Exp-function method for nonlinear wave equations.Chaos Solitons Fractals30(2006),700-708.

[21]Aminikhad H.,Moosaei H.,Hajipour M.,Exact solutions for nonlinear partial differential equations via Exp-function method.Numer.Methods Partial Differ.Equations26(2009),1427-1433.

[22]Zhang Z.Y.,New exact traveling wave solutions for the nonlinear Klein-Gordon equation.Turk.J.Phys.32(2008),235-240.

[23]Wang M.L.,Zhang J.L.and Li X.Z.,The(G′/G)-expansion method and travelling wave solutions ofnonlinear evolutions equations in mathematicalphysics.Phys.Lett.A372(2008), 417-423.

[24]Zhang S.,Tong J.L.and Wang W.,A generalized(G′/G)-expansion method for the mKdv equation with variable coefficients.Phys.Lett.A372(2008),2254-2257.

[25]Zayed E.M.E.,Gepreel K.A.,The(G′/G)-expansion method for finding traveling wave solutions of nonlinear partial differential equations in mathematical physics.J.Math.Phys.50(2009),013502-013513.

[26]Zayed E.M.E.,The(G′/G)-expansion method and its applications to some nonlinear evolution equations in mathematical physics.J.Appl.Math.Computing30(2009),89-103.

[27]Hayek M.,Constructing of exact solutions to the KdV and Burgers equations with power law nonlinearity by the extended(G′/G)-expansion method.Appl.Math.Comput.217(2010), 212-221.

[28]Jawad A.J.M.,Petkovic M.D.and Biswas A.,Modified simple equation method for nonlinear evolution equations.Appl.Math.Comput.217(2010),869-877.

[29]Zayed E.M.E.,A note on the modified simple equation method applied to Sharam-Tasso-Olver equation.Appl.Math.Comput.218(2011),3962-3964.

[30]Zayed E.M.E.,Ibrahim S.A.Hoda,Exactsolutions of nonlinear evolution equation in mathematical physics using the modified simple equation method.Chin.Phys.Lett.29(2012), 060201–4.

[31]Zayed E.M.E.,Arnous A.H.,Exact solutions of the nonlinear ZK-MEW and the potential YTSF equations using the modified simple equation method.AIP Conf.Proc.1479(2012), 2044-2048.

[32]Zayed E.M.E.,Ibrahim S.A.Hoda,Modified simple equation method and its applications for some nonlinear evolution equations in mathematical physics.Int.J.Computer Appl.67(2013),39-44.

[33]Zayed E.M.E.,Ibrahim S.A.Hoda,Exact solutions of Kolmogorov-Petrovskii-Piskunov equation using the modified simple equation method.Acta Math.Appl.SinicaEnglish series,30(2014),749-754.

[34]Zhang Z.Y.,Liu Z.H.,Miao X.J.and Chen Y.Z.,New exact solutions to the perturbed nonlinear Schr¨odinger equation with Kerr law nonlinearity.Appl.Math.Comput.216(2010), 3064-3072.

[35]Moosaei H.,Mirzazadeh M.and Yildirim A.,Exact solutions to the perturbed nonlinear Scrodinger equation with Kerr law nonlinearity by using the first integral method.Nonlinear Analysis:Modelling and Control16(2011),332-339.

[36]Bekir A.,Unsal O.,Analytic treatment of nonlinear evolution equations using the first integral method.Pramana J.Phys.79(2012),3-17.

[37]Lu B.,Zhang H.Q.and Xie F.D.,Traveling wave solutions of nonlinear parial differential equations by using the first integral method.Appl.Math.Comput.216(2010),1329-1336.

[38]Feng Z.S.,The first integral method to study the Burgers-KdV equation.J.Phys.A:Math. Gen.35(2002),343–349.

[39]Ma W.X.,Zhu Z.,Solving the(3+1)-dimensional generalized KP and BKP equations by the multiple exp-function algorithm.Appl.Math.Comput.218(2012),11871-11879.

[40]Ma W.X.,Huang T.and Zhang Y.,A multiple exp-function method for nonlinear differential equations and its application.Phys.Script.82(2010),065003.

[41]Ma W.X.,Lee J.H.,A transformed rational function method and exact solutions to the(3+1) dimensional Jimbo-Miwa equation.Chaos,Solitons and Fractals42(2009)1356-1363.

[42]Ma W.X.,Wu H.Y.and He J.S.,Partial differential equations possessing Frobenius integrable decomposition technique.Phys.Lett.A364(2007),29-32.

[43]Yang Y.J.,Baleanu D.and Yang X.J.,A Local fractional variational iteration method for Laplace equation within local fractional operators.Abst.Appl.Analy.2013,Article ID 202650, 6 pages.

[44]Yang A.M.,Yang X.J.and Li Z.B.,Local fractional series expansion method for solving wave and diffusion equations on cantor sets.Abst.Appl.Analy.2013Article ID 351057,5 pages.

[45]MA H.C.,Zhang Z.P.and Deng A.P.,A new periodic solution to Jacobi elliptic functions of MKdVequation and BBMequation.Acta Math.Appl.SinicaEnglish series,28(2012),409-415.

[46]Afshari E.,Hajimiri A.,Nonlinear transmission lines for pulse shaping in Silicon.IEEE J. Solid state circuits40(2005),744-752.

Received 19 January 2015;Accepted 24 March 2015

?Corresponding author.Email addresses:e.m.e.zayed@hotmail.com(E.M.E.Zayed),alurrfi@yahoo.com (K.A.E.Alurrf i)

AMS Subject Classifications:35K99,35P05,35P99,35C05

Chinese Library Classifications:O175.2


登錄APP查看全文

主站蜘蛛池模板: 久久综合成人| 一级毛片免费观看不卡视频| 日韩欧美亚洲国产成人综合| 综合色亚洲| 又黄又湿又爽的视频| 久草网视频在线| 91亚洲精品第一| 久久九九热视频| 欧美啪啪精品| 国产黄网站在线观看| 欧美成人亚洲综合精品欧美激情| 欧美三级日韩三级| 高清色本在线www| 亚洲第一色视频| 99re热精品视频国产免费| 日韩欧美国产另类| 一本大道AV人久久综合| 高清色本在线www| 99免费视频观看| 亚洲天堂网在线观看视频| 一级一毛片a级毛片| 波多野结衣一区二区三区四区 | 久久综合结合久久狠狠狠97色| 在线va视频| 九月婷婷亚洲综合在线| 久久亚洲中文字幕精品一区| 国产在线精品人成导航| 午夜人性色福利无码视频在线观看| 扒开粉嫩的小缝隙喷白浆视频| 一本久道久久综合多人| 久无码久无码av无码| 亚洲一区波多野结衣二区三区| 国产簧片免费在线播放| 中文字幕免费在线视频| 国产迷奸在线看| 国产黄色视频综合| 亚洲一区二区约美女探花| 在线欧美a| 亚洲美女一区二区三区| 亚洲中文精品人人永久免费| 色婷婷成人| 国产精品亚洲va在线观看| 国产乱人伦AV在线A| 欧美另类第一页| 亚洲人妖在线| 黄色福利在线| 福利视频久久| 中文字幕va| 欧美久久网| 亚洲精品成人片在线观看| 国产精品成人AⅤ在线一二三四| 日韩无码黄色| 呦女亚洲一区精品| 精品国产成人高清在线| 国产人人干| 一级黄色片网| 欧美日韩精品一区二区在线线 | 久久精品国产精品一区二区| 一级毛片不卡片免费观看| 欧美啪啪一区| 久久精品国产91久久综合麻豆自制| 无码'专区第一页| 亚洲天堂网视频| 亚洲有无码中文网| 国产不卡网| 国产福利观看| 欧类av怡春院| 国产99视频精品免费观看9e| 亚洲日韩精品欧美中文字幕| 香蕉精品在线| 国产在线98福利播放视频免费| 色有码无码视频| 久久久黄色片| 精品欧美一区二区三区在线| www精品久久| 免费A∨中文乱码专区| 精品无码一区二区三区在线视频| 国产h视频免费观看| 99热这里只有精品免费国产| 国产视频a| 红杏AV在线无码| 亚洲免费播放|