999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

4 Asymptotic of N-soliton solutions in long time:proof of Theorem 1.1

2015-03-30 08:47:52
Journal of Partial Differential Equations 2015年2期

4 Asymptotic of N-soliton solutions in long time:proof of Theorem 1.1

We present in this section the proof of Theorem 1.1,which,in view of Proposition 1.2, focuses on the analysis of solutions constructed in Section 2.Keeping the notations introduced in Section 2,we already proved that(I+T)F=Cand that

Hence,we have

Consequently,we have

Before discussing the general case ofN-solitons,we discuss the two simple cases whereN=1 andN=2.ForN=1,a simple calculation proves that

Then the 1-soliton solution corresponding to data{λ,μ(0)}is

The 2?soliton solution,u2,corresponding to choicesis

Taking into account the frame(in translation)with speed 2λ2defined by the variablewe have

i.e.the solutionu2behaves(asymptotically whent→±∞)as a progressive wave of speed 2λ2.

Now let us come back to the general case(N∈N),for which we can not establish an explicit formula for the solutionu(t,x).To this end,we rewrite

Hence,we need to study the behavior of the sumTo this end rewrite the system (4.1)as follows

where

The system(4.4)can be rewritten as follows

which implies

Letk0∈{1,...,N}.We define the frame(in translation)with speed 2λk0by the variable

We will analyze the asymptotic in long time.Note that

The system(4.5)can be transformed into

We take the limit whent→?∞for fixedη.This leads,denotingto

We introduce the matrices

where theKlkrefer to the cofactors ofK.Fork=k0,we also have

Summing the last equation onk,we obtain

Thus,we finally get

Proposition 4.1.There existsuch that

where U is the function defined in(4.2)which corresponds toμk0(0)and λk0.

Proof.Recall first that

In what concerns(i),remark thatand the fact thatfollows from the following lemma,since

Lemma 4.1.Let M∈MN(C)and JNthe matrix whose coefficients are ones.Denote K=M+XJ. Then

where the Kijrefer to the cofactors of K.

Proof.LetU,V∈CNbe two column vectors.Then

where〈,〉is the usual scalar product in CN.In fact,it suffices to expand the operatorT=I+U.Vtin the basis composed ofVand the basis of the orthogonal toV.Assume now that the matrixK=M+U.Vtis invertible.Then we can write

whereCof(K)is the cofactor matrix ofK.The conclusion therefore follows by takingU=(1,1,...,1)tandV=(X,X,...,X)t.Finally,the caseKnon-invertible is obtained by continuity.

For equation(ii),it suffices to prove that

Subtracting columnk0from columnjin the matrixwe get

which implies??We have used the identitythat

A similar argument proves that

Combining(4.9)and(4.10)we complete the proof of(ii).

We focus now on assertion(iii).Subtracting the linek0from each of the previous lines, we find thatand using(ii),we obtain

Finally,we get

A parallel argument allows,for the limitt→+∞,to obtain

This completes the proof of Theorem 1.1.

[1]Coste C.,Nonlinear Schr¨odinger equation and superuid hydrodynamics.Eur.Phys.J.B Condens.Matter Phys.1(2)(1998),245-253.

[2]Jones C.A.,Roberts P.H.,Motions in a bose condensate v.stability of solitary wave solutions of non-linear Schr¨odinger equations in two and three dimentions.J.Phys.A,Math.Gen.19(15)(1986),2991-3011.

[3]Kevrekidis P.G.,Malomed B.A.,Cuevas J.,Frantzeskakis D.J.,Solitons in quasionedimentional Bose-Einstein condensates with competing dipolar and local interactions.Phys.Rev.A,79(5)(2009),1-11.

[4]Shabat A.B.,Zakharov V.E.,Exact theory of two-dimensional self-focusing and onedimensional self-modulation of waves in nonlinear media.Sov.Phys.JETP34(1972),62-69.

[5]Shabat A.B.,Zakharov V.E.,Interaction between solitons in a stable medium.Sov.Phys. JETP37(1973),823-828.

[6]Kruskal M.,Miura R.,Gardner C.and Greene J.,Korteweg-de-Vries equation and generalization.Comm.Pure Appl.Math.27(1974),97-133.

[7]G′erard P.,Zhang Z.,Orbital stability of traveling waves for the one-dimensional Gross-Pitaevskii equation.Math.Pures Appl.91(2)(2009),178-210.

[8]Eckhaus W.,Harten A.V.,The Inverse Scattering Transformation and the Theory of Solitons,50North-Holland publishing company,Amsterdam,1981.


登錄APP查看全文

主站蜘蛛池模板: 国产乱子伦精品视频| 在线免费看黄的网站| 日韩欧美视频第一区在线观看| 亚洲一区二区成人| 91福利国产成人精品导航| 99久久精品视香蕉蕉| 国产一区二区三区日韩精品| 国产精品欧美日本韩免费一区二区三区不卡| 亚洲AV人人澡人人双人| 伊人网址在线| 国内毛片视频| 国产精品自在自线免费观看| 欧美天堂在线| 国产一区二区三区免费| 伊人五月丁香综合AⅤ| 国产资源免费观看| 亚洲综合精品香蕉久久网| 亚洲精品免费网站| 99久视频| 欧美一区二区丝袜高跟鞋| 国产成人综合久久| 欧美翘臀一区二区三区| 福利在线不卡一区| 日韩AV无码免费一二三区| 国产簧片免费在线播放| 成人国产精品网站在线看| 小说 亚洲 无码 精品| 亚洲精品色AV无码看| 亚洲码一区二区三区| 亚洲天堂首页| 亚洲第一香蕉视频| 天堂亚洲网| 99热国产这里只有精品9九| 欧美国产综合色视频| 91在线一9|永久视频在线| 亚洲欧美日韩高清综合678| 日韩精品成人在线| 国产黄网站在线观看| 午夜老司机永久免费看片| 国产免费网址| 国产色伊人| 精品夜恋影院亚洲欧洲| 国产精品一区二区国产主播| 国产精鲁鲁网在线视频| 日韩欧美高清视频| 40岁成熟女人牲交片免费| 国产成人夜色91| 国产视频你懂得| 97在线免费| 欧美日韩一区二区在线播放 | 国产日本一区二区三区| 米奇精品一区二区三区| 老司机精品99在线播放| 一本大道在线一本久道| 欧美伊人色综合久久天天| 亚洲精品爱草草视频在线| 美女一级毛片无遮挡内谢| 久久国产精品电影| 在线色国产| 国产精品女主播| 亚洲国产精品无码AV| 国产精品第页| 22sihu国产精品视频影视资讯| 亚洲精品麻豆| 欧美精品亚洲精品日韩专区va| 日本伊人色综合网| 久久国语对白| 国产在线自在拍91精品黑人| 大学生久久香蕉国产线观看| 中文字幕无码av专区久久| 天天综合天天综合| 亚洲第一色视频| 99视频有精品视频免费观看| 久久国产精品无码hdav| 在线观看国产一区二区三区99| 欧美日韩91| 综合人妻久久一区二区精品| 亚洲AⅤ波多系列中文字幕| 91亚洲免费视频| 欧美成人一级| 久久一色本道亚洲| 农村乱人伦一区二区|