黃磊 張飛
摘要:目前,發生率最高的心率失常被認為是心房纖顫,且該病的發生率隨著年齡的增長而上升伴隨著我國人口年齡結構的變化,心房纖顫在我國的發病率逐漸增加。了解該病的發生和發展的機制十分迫切。已經證明,心房重構是該病的重要發生機制:隨著研究的加深,研究人員對心房重構與該病的病理學機制有了更加深刻的了解。現就心房纖顫和重構在發病中的機制進行回顧。關鍵詞:心房重構;心房纖顫;Connexin40; Kvl.5鐘通道中圖分類號:K541.75;R363.21 文獻標識碼:A文章編號:1007-7847(2015)02-0185-04Research Progresses of Pathological Mechanism in Atrial Remodeling and Atrial FibrillationHUANG Lei, ZHANG Fei(Nanshan People's Hospital, Shenzhen 518057, Guangdong, China)Abstract: Atrial fibrillation is one of the most common arrhythmia. The incidence and mortality increase wilh age growth. As China entered the aging era, the needs for diagnosis and treatment of this disease are urgent. The mechanism of atrial fibrillation is atrial remodeling, including atrial electrical remodeling and a- trial structural remodeling.Insight into the mechanism of atrial remodeling is necessary for the diagnosis and treatment of atrial fibrillation. With the rapid development of molecular biology, the realization about atrial remodeling has more profound understanding. The research progresses of pathological mechanism in atrial remodeling and atrial fibrillation are reviewed.Key words: atrial remodeling; atrial fibrillation; Connexin40; Kvl.5 potassium channels(Life Science Research,2015,19(2):185?188) 心房纖顫是當前臨床上發病率最高的心率失常病變,通常也簡稱為房顫[1]。通常,該病變也可能會演變為一種長期性的心率失常,隨著機體的衰老,發病率也會大大增加。隨著中國進入老齡化,心房纖顫在公共衛生中將成為最主要的問題之一,該研究領域也成為心血管方向亟待解決的研究熱點之一。雖然近年來心房纖顫的治療手段已經取得了令人矚目的進展,然而,藥物治療仍是最常規的治療手段。其原理是通過控制心率和心律兩條途徑抑制心房纖顫的發生[2]。通常,利用各種手段控制心律,是治療該病的重要策略。心律控制可以增加運動耐受力、減少癥狀發生及心房纖顫的死亡率[3]。根據目前臨床上的調查結果,通過心率控制,對該病有一定的治療效果。例如心房顫動節律管現隨訪調查(AFFIRM)、持續性房顫心率控制/電轉律研究(RACE)、房顫治療策略研究(STAF)都證明心率控制也可以同樣降低癥狀發生及心房纖顫的死亡率。這些治療手段還能夠減少多種藥物刺激所帶來的各種附加反應[4-7]。以上兩種不同的治療策略在臨床上各有其優勢,只有深入了解其機制后才能正確地選擇病患所需的治療手段。與此同時,新型藥物和各種治療策略及手段也在研發當中,有望為治愈患者帶來福首。根據心房纖顫病程的長短,一般可以分為偶發性、長期性和永久性的病變。在48小時以下的被定義為偶發性心房纖顫,而病程達到一周以上,則為長期性心房纖顫。永久性的病變則不能恢復正常心律這幾種不同持續時間的心房纖顫病變,其發生機制都被認為是發病之初心房重構所引起的。心房纖顫出現后往往會伴隨心房體積增大、心房壁變薄以及內壁血栓形成等結構變化。這些心房組織變化與該病的發生發展有關,了解該病的發生機制,必須從心房重構入手。本文通過回顧心房重構的兩種發生機制,探討了它們在心房纖顫這一常見病中的作用,以期為今后對該病的治療提供理論參考。1心房電重構1995年,Wijffels提出心房電重構,為該研究心房纖顫開拓了新的領域其定義是在心房纖顫期間,心臟的有效不應期縮短,結果引起心房纖顫發生頻率和發生時間延長。臨床和動物模型的研究結果均證明,心房電重構確實能夠引起心房纖顫的效應增強。當前,對心房電重構的研究尚處于起步階段,僅限于各種基因水平的表達變化和Kvl.5鉀離子在發病中的各種變化。1.1基因表達變化與心房電重構基于巳有的各項研究,在發病過程中,多種心房電重構的分子信號通路有所變化。目前最熱門的是鉀電流相關分子變化。已經報道的鉀離子通道多種多樣,在生物途徑中發揮不同作用。在心肌細胞中,目前發現的這些通道電流包括瞬時性、持續性和ATP依賴的3種電流。有研究表明,在心房纖顫的病患中,瞬時性和持續性外向的鉀電流在不同去極化電壓下比竇性心律病人的電流明顯減弱[12]。同時,有研究者報道,有心房纖顫的病患其心肌的鉀離子電流密度明顯下降,低于正常心律的人群[13]。對各種心房纖顫的病人的研究表明,Kv4.3的α亞基基因表達量在慢性患者中表達明顯降低。因此,在電重構過程中導致的瞬時性外向鉀電流密度下降是由Kv4.3通道中α基因表達下降所引發的。然而,α基因表達的異常是因何引起,目前還未有明確的證據。1.2Kvl.5鉀離子通道與心房纖顫相關研究進展Kvl.5鉀離子通道與心率相關最早的報道見于對大鼠的研究[14]。該結果顯示,經過30min心動過速后的大鼠,Kvl.5的mRNA表達水平明顯增加。而鄧玉蓮等研究發現,在接受了換瓣的風心病患者中,持續性心房纖顫的患者Kvl.5表達量明顯下降[15]。與此矛盾的是,研究結果表明在陣發性心房纖顫患者中蛋白水平降低而mRNA水平則未見有變化[16]。在高血壓中,由于心房壁壓力的增加,內向延遲加電流相關基因表達量增加[17]。同樣的,心力衰竭小鼠也表現為心肌細胞Kvl.5表達水平也降低[18]。基于不同的實驗室,根據材料和研究方法的不同,也得到了不同的實驗結果。然而,在心房纖顫中Kvl.5表達水平確有不同程度的下降。根據Kvl.5鉀離子通道在該病中的表達失調,研究者也開發了多種干預該通道的藥物。隨著研究的深入,人們逐漸發現了很多新的Kvl.5阻抑物。這些藥物可以通過特異性抑制心肌中的離子通道,從而對心律失常有較好治療效果。在這些發現的藥物中,化合物S9947被證實對人類Kvl.5有明顯的抑制[19]。其半效抑制濃度為0.42mmol/L。新型的Kvl.5阻滯劑AVE0118可以對心房收縮力有較好的恢復作用[20]。而胞外Bertosamil對Kvl.5電流的抑制表現出劑量依賴性效應[21、22]。此外,NIP-142也能夠抑制Kvl.5的鉀離子通道,對心肌的不應期有明顯的延續作用。有報道稱苯唑卡因從細胞內抑制KW.5通道,且有時間和劑量依賴效應[23]。雖然,現有的胺碘酮、多非利特、氟卡尼、普羅帕酮等藥物,已經應用于臨床治療,并獲得了一定的療效[24]。但也存在著療效指數小、可能危及生命等嚴重不良反應。值得注意的是,這些藥物對不同的個體也效應不一,需要對個性化的基因變異對藥物反應的影響進行進一步的探討。因此,進一步研究和開發針對Kvl.5鉀離子通道阻滯劑的相關藥物,可能為心房纖顫的治療提供更加安全而高效的選擇。2心房結構重構當發生心房纖顫時,能夠引起心房電重構,并且誘導心肌細胞的結構發生變化,如心房的擴張和纖維化的改變,這些變化稱為心房結構重構。心房結構重構表現出細胞膜穩定性的下降,心肌間質組織增生,以及細胞器的形態、數量等發生改變心房結構重構的分子生物學基礎包括,離子通道蛋白變化、縫隙連接蛋白變化以及收縮蛋白和結構蛋白的變化。目前研究得最為深入的是縫隙連接蛋白變化,下面主要介紹心房結構重構的組織變化和縫隙連接蛋白Cx40變化。2.1心房結構重構的組織變化在研究快速心房起搏狗的過程中,首次對心房肌細胞的超微結構的改變進行了闡述,發現狗心肌細胞的變化與慢性心室肌缺血心肌的改變是一致的[25]。它們的細胞均有胚胎表型發展的傾向,表現出去分化的狀態。心肌結構重構的變化特征包括有:細胞和組織的增厚;肌纖維的溶解;糖原在細胞核內的沉積;線粒體腫脹;肌漿網斷裂等[26]。在這些變化中,細胞組織的增厚和肌纖維的溶解是最主要的變化特征心律失常發生的可能性隨著心肌細胞的肥大而增加;由于心肌細胞體積的增大,心房內的電傳導的各向異性增加,導致信號傳導的空間離散程度增加,在高血壓患者發生心房重構后,心房纖顫復發幾率增加,心房肌肉的收縮能力降低,影響心臟功能的正常發揮。另外,心房結構重構導致了心房肌數量減少,心房的分泌活動減弱,心房分泌因子減少,最終影響心臟的生理活動。在心房重構中也發現,心房內徑增大,分泌活動降低,活性因子在心房中的含量減少[27]。2.2縫隙連接蛋白Cx40在心房纖顫中的作用心肌細胞的電位在心房纖顫發生過程中發生變化細胞間電沖動傳導的結構基礎是細胞間隙連接連接蛋白(cormexin,Cx)是細胞縫隙連接的蛋白簡稱[28]。Cx40、Cx43和Cx45是存在于人體心肌細胞中的3種主要連接蛋白[29]。在心臟的4個心腔中都有Cx43的分布,心肌傳導束及浦肯野纖維中分布的主要是Cx45[30]。作為心房中電沖動的結構基礎,Cx40主要在心房肌中表達[31、32]。Cx40在心臟的心房和心室中有廣泛的分布,并且在心房和心室間的表達呈現出差異性。Cx40在心肌細胞中表達豐富,而在心室細胞中的表達水平很低,幾乎檢測不到其表達[33、34]。縫隙連接蛋內的表達和分布受到心肌炎、纖維化以及壞死等心房內環境改變等的影響。作為電壓的動態結構基礎,縫隙連接的開關受到細胞膜電位的調節。因而,由房顫引起的細胞膜電位的變化能夠影響縫隙連接的狀態及其表達量[35]。已有研究對房顫發生過程中Cx40的表達水平進行了分析,但是研究結果卻大相徑庭。在電生理重塑誘發的慢性房顫中,房顫患者心房細胞細胞膜外的Cx的蛋白表達水平上升[36]。與對照組相比,房顫復發組Cx40的mRNA表達水平和蛋白質水平都顯著上升[37]。同時,在人和鼠的房顫對比實驗中也發現有類似的結果,Cx40的表達水平上升[38]。在房顫模型中,發現Cx40在心肌細胞中的表達比對照組中水平要低[39]。同樣,在患有慢性房顫病人中,Cx40的mRNA表達水平也顯暑降低,而絲氨酸磷酸化的Cx40的表達水平卻上升[40]。接受迷宮手術的AF患者的右心耳中的Cx40的蛋白減少[41]。同樣在術后新發陣的房顫中,Cx40蛋白的表達水平也是下降的[42]。以上這些結果表明,房顫的發生能夠誘導Cx40的表達量與空間分布上發生變化。然而,關于Cx40對心房纖顫發生的機制以及預后過程中的影響還需要進一步的研究:1小結與展望總的來說,關于心房重構與心房纖顫的病現學機制的研究報道,近年來有了較大的進展。然而,對于心房重構的分子生物學機制研究,往往集中于單個基因的功能研究,并未考慮到多基因的相關性。在今后的研究中,應該著重對蛋白相互作用、轉錄因子調控基因表達、表觀遺傳學等網絡信號調控進行研究,為治療心房纖顫提供新的線索。參考文獻(References):[1]SAVELIEVA I, KAKOUROS N, K0URL10UR0.S A, el al. Up-slream therapies for management of atrial fibrillation: review of clinical evidence and implications for European Society of Cardiology guidelines. Part I: primary prevention[J]. Europace. 2011,13(3):308-328.[2]FRASURE-SMITH N, LESP^KANCE F, TALAJK; M, ct d. Anxiety sensitivity moderates prognostic importance of rhythm-versus rate-control strategies in patienls wilh atrial fibrillation and congestive heart failure: insights from the AF- CHF trial[J]. Circulation: Heart Failure, 2012. 5(3): 322-330.[31 STEINBERG B A, HOI.MKS D N, EZEKOWITZ M D, el al. Rate versus rhythm control for management of atrial fibrillation in clinical practice: results from the outcomes registry for better informed treatment of atrial fibrillation (ORBIT-AF) reistry[Jl. American Heart Journal,2013,165(4):622-629.[4]ALAM M, BANDEAU S J,SHAHZAD S A, et al. Real-life global survey evaluating patients with atrial fibrillation (RK-ALISE-AF):results of an international observational registiy[J]. Expert Review of Cardiovascular Therapy,2012,10(3): 283-291.[5]HEIST E K, MANSOUR M, RUSKIN J N. Rate conlrol in atri?al fibrillation targets, methods, resynchronization consid era tions[J].Circulation,2011,124(24): 2746-2755.[6]TU§KAN -MOHAR L. Understanding the standard treatments and the treatment options of alrial fibrillation [J]. Ada Clinica Croatica,2011,50(Supplement 2):54-56.[7]CALDEIRA D, DAVID C, ET ALSAMPAIO C. Rate versus rhythm control in atrial fibrillation and clinical oulcomes: up?dated systematic review and meta-analysis of randomized controlled trials[J]. Archives of Cardiovascular Diseases,2012,105(2):226-238.[8]CHIANG C E, INADITCH-BROLEL, MURIN J, et al. Distri?bution and risk profile of paroxysmal, persistent, and permanent atrial fibrillation in routine clinical practice insight from the real-life global survey evaluating patients with atrial fibrillation international registry[J].Circulation:Arrhythmia and Electrophysiology,2012,5(4):632-639.[9]BALL J, CARRINGTON M, STEWART S. Mild cognitive impairment in high-risk patients with chronic atrial fibrillation:a forgotten component of clinical management?[J]. Heart,2013, 99(8):542-547.[10]NCHEZ C, BUENO-OROVIO A, WETTWER E, et al. Inter-subject variability in human atrial action potential in sinus rhythm versus chronic atrial fibrillation[J]. PLoS one,2014,9(8):el05897.[11]WIJFFELS M, KIRCHHOF C, DORLAND R, et al. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats[J]. Circulation, 1995, 92(7):1954-1968.[12] OOSTERHOFF P. The use of repolarization variability for arrhythmic risk monitoring[J]. Utrecht:Utrecht University, 2011.[13]STAUDACHER K, STAUDACHER I, FICKER E, et al. Carvedilol targets human K2p3.1 (TASK1) K+ leak channels[J].British Journal of Pharmacology,2011,163(5):1099-1110.[14]YAMASHITA T, SEKIGUCHI A, IWASAK1 Y K, et al. Ciben-zoline attenuates upregulation of Kvl. 5 channel gene expres?sion by experimental paroxysmal atrial fibrillation[J].Interna?tional Heart Journal,2005,46(2):279-288.[15]鄧玉蓮,高峰,許春萱,等.心房顫動患者心房組織延遲整流鉀通道基因表達的研究[J]中華心律失常學雜志(DENG Yu-lian, GAO Feng, XU Chun-xuan, el al. Gene expression of atrial delayed rectifier potassium channeks in human atrial fib?rillation[J]. Chinese Journal of Cardiac Arrhythmias),2006,9(6):445-448.[16] BRUNDEL B J, VAN GELDER I C, HENNING R H, et al. Ion channel remodeling is related to intraoperative atrial effective refractory periods in patients with paroxysmal and persistent atrial fibrillationfj]. Circulation,2001,103(5):684-690.[17]JEPPS T, CHADHA P, DAVIS A, et al. Downregulation of Kv7.4 channel activity in primary and secondary hypertension[J]. Circulation,2011.124(5):602-611.[18]張曉偉,李廣平.Kvl.5鉀通道與心房顫動[J].中國心血管雜志(ZHANG Xiao-wei,LI Guang-ping. Kvl. 5 potassium channels and atrial fibrillation[J] Chinese Journal of Cardiovas?cular Medicine),2008,13(2):144-146.[19]FRIEDERICH P, PFIZENMAYER H. The novel Kvl.5 chan?nel blocker vernakalant for successful treatment of new-onset atrial fibrillation in a critically ill abdominal surgical patient[J]. British Journal of Anaesthesia,2011,107(4):644-645.[20]DECHER N, KUMAR P, GONZALEZ T, el al. Binding site of a novel Kvl. 5 blocker: a “foot in the door”against atrial fib-rillation[J]. Molecular Pharmacology, 2006,70(4):1204-1211.[21]LAGRUTl'A A, WANG J, FERMINI B, et al. Novel, potent in-hibitors of human Kvl. 5 K + channels and ultrarapidly acti vating delayed rectifier potassium current [J]. Journal of Pharmacology and Experimental Therapeutics,2006,317(3):1054-1063.[22]GODREAU D, VRANCKX R, ET ALHATEM S N. Mechanisms of action of anti arrhythmic agent bertosamil on hKvl.5 channels and outward potassium current in human atrial my-ocytes[J]. Journal of Pharmacology and Experimental Therapeutics,2002,300(2): 612-620.[23]WU H, WU W, SUN H, et al. Acacetin causes a frequency-and use-dependent blockade of hKvl .5 channels by binding to the S6 domain [J].Journal of Molecular and Cellular Cardiology,2011,51(6):966-973.[24]CALKTNS H, REYNOLDS M R, SPECTOR P, et al. Treatment of atrial fibrillation with antiarrhythmic drugs or radiofrequency ablation two systematic literature reviews and meta-analy-ses[J]. Circulation: Arrhythmia and Electrophysiology,2009,2(2):349-361.[25]IWASAKI Y, NISHIDA K, KATO T, et al. Atrial fibrillation pathophysiology implications for management[J].Circulation,2010,124:2264-2274.[26]OAKES R S, BADGER T J, KHOLMOVSKI E G, et al. Detec?tion and quantification of left atrial structural remodeling with delayed-enhancement magnetic resonance imaging in patients with atrial fibrillation[J]. Circulation,2009,119(13):1758- 1767.[20]ROSSI A, CICOIRA M, ZANOLLA L, et al. Determinants and prognostic value of left atrial volume in patients with dilated cardiomyopathy[J].Journal of the American College of Cardiology, 2002, 40(8): 1425-1430.[21]MYLVAGANAM S, RAMANI M, KRAWCZYK M, et cd. Roles of gap junctions, connexins, and pannexins in epilepsy[J]. Frontiers in Physiology,2014,5(1):172.[29]MEENS M, SABINE A, PETROVA T, et al. Connexins in lymphatic vessel physiology and disease[J].FEBS letters,2014,588(8):1271-1277.[30]SHIBATA Y, KUMAI M, NISHII K, et al. Diversity and molecular anatomy of gap j unctions[J]. Medical Electron Microscopy,2001,34(3):153-159.[31]COTTRELL G T, WU Y, ET ALBURT J M. Cx40 and Cx43 expression ratio influences heteromeric/heterotypic: gap junc tion channel properties[J]. American Journal of Physiology-Cell Physiology,2002,282(6):C1469-C1482.[32]KURTZ A. Connexins, renin cell displacement and hypertension[J].Current Opinion in Pharmacology,2015,21(1):1-6.[33]BASTIDE B, NEYSES L, GANTEN D, et al. Gap junction protein connexin40 is preferentially expressed in vascular endothelium and conductive bundles of rat myocardium and is increased under hypertensive conditions[J]. Circulation Research, 1993,73(6):1138-1149.[34]VEERARAGHAVAN R, GOURDIE R, POELZING S. Mechanisms of cardiac conduction: a history of revisions [J]. Ameri?can Journal of Physiology-Heart and Circulatory Physiology,2013,306(5): H619-H627.[35]HARRIS A L. Emerging issues of connexin channels: biophysics fills the gap[J]. Quarterly Reviews of Biophysics,2001,34(3):325-472.[36]POLONTCHOUK L, HAEFLIGER J A, EBELT B, et al. Effects of chronic atrial fibrillation on gap junction distribution in human and rat atriafj].Journal of the American College of Cardiology,2001,38(3):883-891.[37]KATO T, IWASAKI Y, NATTEL S. Connexins and atrial fibrillation filling in the gaps[J].Circulation.2012,125(2):203— 206.[38]MAEDA S, TSUKIHARA T. Structure of the gap junction channel and its implications for its biological functions [J]. Cellular and Molecular Life Sciences.2011,68(7): 1115-1129.[39]AUSMA J, VAN DER VELDEN H M, LENDERS M H, et al. Reverse structural and gap-junctional remodeling after prolonged atrial fibrillation in the goat[J]. Circulation,2003,107(15):2051 - 2058.[40]NAO T, OHKUSA T, HISAMATSU Y, et al. Comparison of expression of connexin in right atrial myocardium in patients with chronic atrial fibrillation versus those in sinus rhythm[J].The American Journal of Cardiology,2003,91(6):678-683.[41] KOSTIN S, KLEIN G, SZALAY Z,et al. Structural correlate of atrial fibrillation in human patients[J].Cardiovascular Research,2002,54(2):361-379.[42]WILHELM M, KIRSTE W, KULY S, et al. Atrial distribution of connexin 40 and 43 in patients with intermittent, persistent,and postoperative atrial fibrillation[J]. Heart, Lung and Circulation, 2006,15(1):30-37.