李朝蘇, 湯永祿 *, 吳 春, 吳曉麗, 黃 鋼, 何 剛, 郭大明
(1四川省農業科學院作物研究所, 農業部西南地區小麥生物學與遺傳育種重點實驗室,四川成都 610066; 2江油市農業局,四川江油 621700)
施氮量對四川盆地小麥生長及灌漿的影響
李朝蘇1, 湯永祿1 *, 吳 春1, 吳曉麗1, 黃 鋼1, 何 剛2, 郭大明2
(1四川省農業科學院作物研究所, 農業部西南地區小麥生物學與遺傳育種重點實驗室,四川成都 610066; 2江油市農業局,四川江油 621700)

氮; 小麥; 物質生產; 灌漿特性
小麥是全球最重要的糧食作物之一,受生態條件、生產水平的制約,區域間小麥產量差異極大,雖有小面積單產突破9000 kg/hm2[1-4],但全世界平均單產僅有2800 kg/hm2,我國也不足5000 kg/hm2,即使生產條件較好的區域,大面積單產也僅有6000 kg/hm2左右,和根據各地光溫資源估算的產量潛力仍有較大的差距[5-7]。

西南麥區是我國第三大小麥優勢產區,常年播種面積210×104hm2,受生態條件所限,生產水平和黃淮、長江中下游等區域有明顯差距,有關高產技術探索雖已有30余年,但直至本世紀初才在育種和栽培技術上有所突破,選育出一批以川麥104、川麥42為代表的具超高產潛力的新品種,實產驗收屢次突破9000 kg/hm2[4, 10-11]。本研究選擇近年通過國家審定、并在長江上游區域有著廣泛種植的兩個新品種川麥104和內麥836,研究施氮量對其物質生產和灌漿特性的影響,以明確西南地區高產、超高產小麥群體的規律特點,為完善西南地區小麥高產栽培技術提供理論和技術依據。
1.1 試驗設計
試驗采用裂區設計,品種為主區,施氮量為副區,施氮水平分別為0、90、135、180、225 kg/hm2,小區面積12 m2,3次重復。每年的10月30日播種,免耕撬窩點播,行距24 cm,窩距13 cm,每窩播12粒種子,播種后覆蓋粉碎的稻草。出苗后勻苗,基本苗保持在220苗/m2左右,2012年內麥836的田間出苗率較低,其各小區基本苗在170苗/m2左右。施氮處理底肥和拔節期追肥比例分別是60%和40%,五氧化二磷和氧化鉀用量按75 kg/hm2作底肥施用,氮、 磷、 鉀分別由尿素、過磷酸鈣和氯化鉀提供,施肥時將尿素和氯化鉀溶于少量水中澆施,其他時間不再灌溉。在苗期化學除草,孕穗和灌漿期防治蚜蟲。
1.2 測定項目及方法
1.2.1 莖蘗變化 勻苗后,每小區沿對角線方向確定3個代表性樣點,每點1行連續的5窩,調查基本苗,并于分蘗盛期、拔節始期、開花期和成熟期調查樣點內的莖蘗數或穗數,換算群體莖蘗數及穗數。
1.2.2 個體和群體質量 在分蘗盛期、拔節初期、開花期和成熟期,每小區取代表性的4窩植株,將地下部分剪掉,在分蘗盛期和拔節期將植株分為葉片和莖鞘兩部分,開花期分為綠葉、黃葉+莖鞘、穗三部分,成熟期分為葉片、莖鞘、穗和籽粒四部分烘干稱重,并用干重法測定葉面積。根據各時期調查的群體數量計算群體干物質積累量、葉面積指數,并按照周玲等[12]的方法計算花前干物質轉移量、轉移物質貢獻率等指標,具體計算方法如下:
花前干物質轉移量(kg/hm2)=開花期地上部分干物質積累量-成熟期地上部分營養器官干物質量
轉移物質貢獻率(%)=干物質轉移量/籽粒產量×100
1.2.3 產量和穗部農藝結構 各小區收獲全部穗,晾曬后用小區脫粒機脫粒并稱重,用PM-8188 New型谷物水分測定儀測試稱重時的籽粒水分含量。各小區取樣損失面積為0.5 m2,根據小區籽粒產量、含水量以及實際收獲面積折算13%含水量下的單產和氮素農學利用效率。具體計算方法如下:
產量(kg/hm2)=小區實收產量×(1-籽粒稱重時含水量)×10000/[(12-0.5)×0.87]
氮素農學利用效率(kg/kg)=(施氮區籽粒產量-空白區籽粒產量)/施氮量
收獲籽?;旌暇鶆蚝箅S機數出兩個500粒稱重計算千粒重,兩份樣品重量差數與平均數之比保持在5%以內。在成熟期干物質測定的樣本中隨機取30個穗調查穗部農藝性狀,包括穗長、小穗數、退化小穗數和穗粒數等。
1.2.4 灌漿參數 初花期每個小區標記長勢一致且同一天開花的100個穗,在開花7 d后每隔5 d取10穗,將每穗粒剝出,統計數目后烘干稱重。采用Logistic方程[W=K/(1+eA+Bx)]對其干物質積累過程進行模擬(決定系數R2均在0.99以上),其中W為觀測的籽粒質量,x為開花至觀測時的天數,A和B為方程對不同處理確定的參數,K為擬合最大籽粒質量[13]。
對該方程求一階導數W′,可得籽粒生長速率方程,并可得到以下積累特征參數:
籽粒生長起始勢 C0=K/(1+eA);
籽粒最大灌漿速率出現的時間Tmax(d)= -A/B;
最大灌漿速率
Rmax[g/(1000?!)]= -KB/4。
灌漿速率曲線的2個拐點:
t1,2=-(A±1.317)/B;
有效灌漿期T0.99K=-(4.59512+A)/B;
漸增期灌漿速率 R1=K/(1+ eA-Bt1)/t1;
快增期灌漿速率 R2= [K/(1+ eA-Bt2)- K/(1+ eA-Bt1)]/(t2-t1);
緩增期灌漿速率 R3= [K/(1+ eA-BT0.99K)- K/(1+ eA-Bt2)]/(T0.99K-t2);
平均灌漿速率R= K/(1+ eA-BT0.99K)/T0.99K。
1.3 數據分析
采用 Excel 2003 和DPS v12.50 軟件對數據進行整理、統計分析和作圖。
2.1 主要性狀的聯合方差分析
綠汁鎮地處河谷地帶,道路交通不便,加之山路崎嶇,運輸核桃只能是小、中型貨車,外運成本高,交通運輸條件差,導致在收購過程中單價上偏低。
試驗產量、產量結構及不同生育期干物質積累量、葉面積指數的聯合方差分析結果(表1和表2)表明,施氮水平、品種以及年際間氣候條件均對產量及各構成因子有顯著的影響,施氮水平對產量的影響大于品種和年份,品種對穗粒數的影響效應大于施氮量和年份,而年份對有效穗數、千粒重、收獲指數的影響更大。兩因素互作對產量、有效穗數、單位面積粒數和收獲指數均無明顯影響,但施氮量與品種、品種與年份互作對穗粒數和千粒重有顯著或極顯著影響。施氮量、品種與年份三者無明顯的互作效應(表1)。
施氮水平、品種以及年份對分蘗、拔節期的干物質積累量和葉面積指數有極顯著影響,尤其是年份影響效應更大。2012年小麥分蘗階段雨水充沛,群體數量大,干物質積累量多;而2013年分蘗期降雨較常年明顯偏低,分蘗數受影響,干物質積累量也明顯低于2012年。雖然施氮量、年份對開花期、成熟期的干物質積累量也有顯著影響,但品種間差異已不顯著,而且年份的影響也低于分蘗和拔節階段。除拔節期干物質積累量和葉面積指數具有施氮量和年份互作效應、開花期葉面積指數存在品種與年份互作效應外,其他生育期的干物質積累量和葉面積指數無兩者或三者的互作效應(表2)。

表1 產量和產量結構的聯合方差分析Table 1 Combined analysis of variances of grain yield and yield components
注(Note): * —P<0.05; ** —P<0.01.

表2 不同生育期干物質積累量和葉面積指數的聯合方差分析Table 2 Combined analysis of variances of dry matter accumulation and leaf area index in different growth stages
注(Note): * —P<0.05; ** —P<0.01.
2.2 產量和產量結構
雖然年際間產量和各構成因子有明顯變化,但隨著施氮量的增加多數參數值均呈上升趨勢。同一施氮水平下CM104的產量高于NM836,兩個品種均在N 135 kg/hm2處理時產量達到較高水平,與N 180 kg/hm2和N 225 kg/hm2處理差異不顯著,且較90 kg/hm2處理有大幅升高。依據兩年平均產量(y)和施氮量(x)的關系分別對NM836和CM104建立一元二次方程,其中NM836:y= - 0.0934x2+ 35.991x + 6651.5(P<0.01),最高產量施氮量為192.7 kg/hm2,理論最高產量為10118.7 kg/hm2。川麥104:y= -0.1056x2+ 44.023x + 6724.6(P<0.01),最高產量施氮量為208.4 kg/hm2,理論最高產量為11312.8 kg/hm2。隨著施氮量的增加,氮素農學利用效率呈明顯下降趨勢,NM836的降幅大于CM104。


表3 施氮量對不同品種產量、產量結構及氮素農學利用效率的影響Table 3 Effect of the N rates on yield, yield components and nitrogen agricultural utilization efficiency
注(Note): 同列數值后面不同小寫字母表示同一年度、同一品種處理間差異達到5%顯著水平Values followed by different letters in a column are significant within the same year and cultivar among different treatments at the 5% level; ES—Effective spikes, GNS—Grain numbers per spike, GNH—Grain number per hectare; TGW—1000-grain weight; HI—Harvest index; LR—Lodging ratio; NAUE—Nitrogen agricultural utilization efficiency.
2.3 群體干物質積累量變化


表4 施氮量對不同品種干物質積累量的影響(kg/hm2)Table 4 Effect of the N rates on dry matter accumulation
注(Note): 同列數據后不同小寫字母表示同一品種不同處理間差異達到5%顯著水平Values followed by different letters in a column are significantly different among different treatments for the same cultivar at 5% level.

圖1 不同生育階段干物質積累量Fig.1 Dry matter accumulation at different growth stages[注(Note): S-T—播種至分蘗期From seeding to tillering, T-J—分蘗至拔節期 From tillering to jointing; J-F—拔節至開花期From jointing to flowering; F-M—花期至成熟期 From flowering to maturity.]
2.4 不同生育階段干物質積累量

2.5 開花前物質轉移量及轉移貢獻率
籽粒產量的物質來源一是開花期儲存的物質再分配,二是花后光合產物的積累,兩個來源對籽粒的貢獻因區域、品種、栽培措施不同而異。2012年度,花前干物質積累量大,其在花后轉移量也較高,其中N 135 kg/hm2處理處于一個較低水平,而N 90 kg/hm2處理和N 180 kg/hm2處理處于一個較高水平,兩個品種轉移的量因處理不同互有高低。2013年,開花期干物質積累量相對較少,花后干物質轉移量也較少,但和其他處理相比,N 135 kg/hm2處理仍處于一個較低水平, 不施氮處理和N 90 kg/hm2處理處于一個較高水平(圖2)。
從轉移物質對籽粒的貢獻率來看(圖3),不施氮處理因籽粒絕對產量低,其花前儲存物質對籽粒的貢獻率較高,N 90 kg/hm2處理轉移量大,其貢獻率也較高,而N 135 kg/hm2處理無論品種和年度均處于一個較低水平。除2013年CM104外,N 225 kg/hm2處理的轉移物質貢獻率也處于一個較低水平。
2.6 對灌漿特性的影響
灌漿特性的相關研究結果表明,千粒重與灌漿速率、灌漿時間均有顯著或極顯著的相關性,而與灌漿起始勢僅有弱的相關性,籽粒初始大小并不是影響籽粒重量的主要因素。

圖2 施氮量對花后物質轉移量的影響Fig.2 Effect of the N rates on dry matter translocation amount after flowering

圖3 施氮量對轉移物質貢獻率的影響Fig.3 Effect of the N rates on the contribution of remobilization to grain yield
從整穗來看,隨著施氮量的增加,平均灌漿速率和漸增期的灌漿速率呈下降趨勢(圖4)。對于最大灌漿速率,NM836在180 kg/hm2處理時即有大幅下降,而CM104在225 kg/hm2才有大幅下降。施氮對CM104灌漿時間的影響相對較小,但有降低NM836快增期和緩增期的趨勢。

圖4 施氮量對籽粒灌漿的影響Fig.4 Effect of the N rates on grain filling of whole spike grains




[1] 丁曉義, 姜鴻明, 陳永娜, 等. 保障我國糧食安全的小麥育種目標探討[J]. 山東農業科學, 2008, (3): 14-18. Ding X Y, Jiang H M, Chen Y Netal. Research on wheat breeding aims for food safety in China[J]. Shandong Agricultural Sciences, 2008, (3): 14-18.
[2] 于振文, 田奇卓, 潘慶民, 等. 黃淮麥區冬小麥超高產栽培的理論與實踐[J]. 作物學報, 2002, 28(5): 577-585. Yu Z W, Tian Q Z, Pan Q Metal. Theory and practice on cultivation of super high yield of winter wheat in the wheat fields of Yellow River and Huaihe River districts[J]. Acta Agronomica Sinica, 2002, 28(5): 577-585.
[3] 丁錦峰, 楊佳鳳, 王云翠, 等. 長江中下游稻茬小麥超高產群體干物質積累與分配特性[J]. 麥類作物學報, 2012, 32(6): 1118-1123. Ding J F, Yang J C, Wang Y Cetal. Accumulation and distribution characteristics of dry matter of super high yield wheat under rice stubble in middle and lower reaches of the Yangtse River[J]. Journal of Triticeae Crops, 2012, 32(6): 1118-1123.
[4] 湯永祿, 李朝蘇, 吳春, 等. 四川盆地弱光照生態區小麥超高產技術途徑分析[J]. 麥類作物學報, 2013, 33(1): 51-59. Tang Y L, Li C S, Wu Cetal. Analysis on the technical measures for super high yield of wheat (9 t·hm-2) in Sichuan Basin with weak light[J]. Journal of Triticeae Crops, 2013, 33(1): 51-59.
[5] 李軍, 王立祥, 邵明安, 樊廷錄. 黃土高原地區小麥生產潛力模擬研究[J]. 自然資源學報, 2001, 16(2): 161-165. Li J, Wang L X, Shao M A, Fan T L. Simulation of wheat potential productivity on Loess Plateau Region of China[J]. Journal of Natural Resources, 2001, 16(2): 161-165.
[6] 王學強, 賈志寬, 李軼冰. 基于AEZ 模型的河南小麥生產潛力研究[J]. 西北農林科技大學學報(自然科學版), 2008, 36(7): 85-90. Wang X Q, Jia Z K, Li Y B. Evaluations on the productive potential of wheat based on AEZ model in Henan Province[J]. Journal of Northwest A&F University (Natural Science Edition), 2008, 36(7): 85-90.
[7] 王宏, 陳阜, 石全紅, 等. 近30 a黃淮海農作區冬小麥單產潛力的影響因素分析[J]. 農業工程學報, 2010, 26(S1): 90-95. Wang H, Chen F, Shi Q Hetal. Analysis of factors on impacting potential productivity of winter wheat in Huanghuaihai agricultural area over 30 years[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(S1): 90-95.
[8] 鄭成巖, 于振文, 馬興華, 等. 高產小麥耗水特性及干物質的積累與分配[J]. 作物學報, 2008, 34(8): 1450-1458. Zheng C Y, Yu Z W, Ma X Hetal. Water consumption characteristic and dry matter accumulation and distribution in high-yielding wheat[J]. Acta Agronomica Sinica, 2008, 34(8): 1450-1458.
[9] 田中偉, 王方瑞, 戴廷波, 等. 小麥品種改良過程中物質積累轉運特性與產量的關系[J]. 中國農業科學, 2012, 45(4): 801-808. Tian Z W, Wang F R, Dai T Betal. Characteristics of dry matter accumulation and translocation during the wheat genetic improvement and their relationship to grain yield[J]. Scientia Agricultura Sinica, 2012, 45(4): 801-808.
[10] 湯永祿, 李朝蘇, 吳春, 等. 四川盆地單產9000 kg/hm2以上超高產小麥品種產量結構與干物質積累特點[J]. 作物學報, 2014, 40(1): 134-142. Tang Y L, Li C S, Wu Cetal. Yield component and dry matter accumulation in wheat varieties with 9000 kg/ha yield potential in Sichuan Basin[J]. Acta Agronomica Sinica, 2014, 40(1): 134-142.
[11] 李俊, 魏會廷, 楊粟潔, 等. 川麥42 的1BS 染色體臂對小麥主要農藝性狀的遺傳效應[J]. 作物學報, 2009, 35(12): 2167-2173. Li J, Wei H T, Yang S Jetal. Genetic effects of 1BS chromosome arm on the main agronomic traits in Chuanmai 42[J]. Acta Agronomica Sinica, 2009, 35(12): 2167-2173.
[12] 周玲, 王朝輝, 李富翠, 等. 不同產量水平旱地冬小麥品種干物質累積和轉移的差異分析[J]. 生態學報, 2012, 32(13): 4123-4131. Zhou L, Wang C H, Li F Cetal. Analysis of dry matter accumulation and translocation for winter wheat cultivars with different yields on dryland[J]. Acta Ecologica Sinica, 2012, 32(13): 4123-4131.
[13] 孫花, 柴守璽, 劉小娥, 常磊. 不同熟期小麥籽粒灌漿特性的研究[J]. 甘肅農業大學學報, 2009, 44(6): 12-18. Sun H, Chai S X, Liu X E, Chang L. Studies on grain filling characteristics in different maturity type wheat[J]. Journal of Gansu Agricultural University, 2009, 44(6): 12-18.
[14] 于振文, 潘慶民, 姜東, 等. 9000 kg/公頃小麥施氮量與生理特性分析[J]. 作物學報, 2003, 29(1): 37-43. Yu Z W, Pan Q M, Jiang Detal. Analysis of the amount of nitrogen applied and physiological characteristics in wheat of the yield level of 9000 kg per hectare[J]. Acta Agronomica Sinica, 2003, 29(1): 37-43.
[15] 林琪, 侯立白, 韓偉. 不同肥力土壤下施氮量對小麥子粒產量和品質的影響[J]. 植物營養與肥料學報, 2004, 10(6): 561-567. Lin Q, Hou L B, Han W. Effects of nitrogen rates on grain yield and quality of wheat in different soil fertility[J]. Plant Nutrition and Fertilizer Science, 2004, 10(6): 561-567.
[16] 張法全, 王小燕, 于振文, 等. 公頃產10000 kg小麥氮素和干物質積累與分配特性[J]. 作物學報, 2009, 35(6): 1086-1096. Zhang F Q, Wang X Y, Yu Z Wetal. Characteristics of accumulation and distribution of nitrogen and dry matter in wheat at yield level of ten thousand kilograms per hectare[J]. Acta Agronomica Sinica, 2009, 35(6): 1086-1096.
[17] 石祖梁, 顧克軍, 楊四軍. 氮肥運籌對稻茬小麥干物質、氮素轉運及氮素平衡的影響[J]. 麥類作物學報, 2012, 32(6): 1128-1133. Shi Z L, Gu K J, Yang S J. Effect of nitrogen application on translocation of dry matter and nitrogen and nitrogen balance in winter wheat under rice-wheat rotation[J]. Journal of Triticeae Crops, 2012, 32(6): 1128-1133.
[18] 杜世州, 曹承富, 張耀蘭, 等. 氮素運籌對淮北地區超高產小麥養分吸收利用的影響[J]. 植物營養與肥料學報, 2011, 17(1): 9-15. Du S Z, Cao C F, Zhang Y Letal. Effects of nitrogen application on nitrogen absorption, utilization in super-high-yielding wheat in Huaibei region[J]. Plant Nutrition and Fertilizer Science, 2011, 17(1): 9-15.
[19] 王月福, 姜東, 于振文, 曹衛星. 高低土壤肥力下小麥基施和追施氮肥的利用效率和增產效應[J]. 作物學報, 2003, 29(4): 491-495. Wang Y F, Jiang D, Yu Z W, Cao W X. Nitrogen use efficiency and yield of wheat with basal and top-dressed nitrogen fertilizers in soils with different fertility[J]. Acta Agronomica Sinica, 2003, 29(4): 491-495.
[20] 高國華. 不同肥力土壤小麥施氮增產效應及氮肥利用率研究[J]. 河南科技學院學報(自然科學版), 2012, 40(3): 11-15. Gao G H. Effect of nitrogen application on yield-increasing and nitrogen use efficiency of wheat in different fertility soils[J]. Journal of Henan Institute of Science and Technology (Natural Sciences Edition), 2012, 40(3): 11-15.
[21] 李向東, 陳源泉, 湯永祿, 等. 集約多熟稻田長期保護性耕作條件下土壤養分變化分析[A]. 高旺盛, 孫占樣. 中國農作制度研究進展2008[C]. 沈陽: 遼寧科學技術出版社, 2008. 392-398. Li X D, Chen Y Q, Tang Y Letal. Soil fertility change analysis of intensive multiple-cropping paddy fields with conservation farming system [A]. Gao W S, Sun Z X. Chinese Farming System Research Progress in 2008[C]. Shenyang: Liaoning Science and Technology Press, 2008. 392-398.
[22] 王旭, 李貞宇, 馬文奇, 張福鎖. 中國主要生態區小麥施肥增產效應分析[J]. 中國農業科學, 2010, 43(12): 2469-2476. Wang X, Li Z Y, Ma W Q, Zhang F S. Effects of fertilization on yield increase of wheat in different agro-ecological regions of China[J]. Scientia Agricultura Sinica, 2010, 43(12): 2469-2476.
[23] 陳安強, 雷寶坤, 魯耀, 等. 南方山地丘陵區考慮水稻產量和生態安全的容許施氮量[J]. 農業工程學報, 2013, 29(9): 131-139. Chen A Q, Lei B K, Lu Yetal. Study on nitrogen application rate tolerance based on rice yield and ecological security in hilly areas of South China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(9): 131-139.
[24] 范明生, 劉學軍, 江榮風, 等. 覆蓋旱作方式和施氮水平對稻-麥輪作體系生產力和氮素利用的影響[J]. 生態學報, 2004, 24(11): 2591-2596. Fan M S, Liu X J, Jiang R Fetal. Effects of non-flooded mulching cultivation and N rates on productivity and N utilization in rice-wheat cropping systems[J]. Acta Ecologica Sinica, 2004, 24(11): 2591-2596.
[25] 武際, 郭熙盛, 魯劍巍, 等. 連續秸稈覆蓋對土壤無機氮供應特征和作物產量的影響[J]. 中國農業科學, 2012, 45(9): 1741-1749. Wu J, Guo X S, Lu J Wetal. Effects of continuous straw mulching on supply characteristics of soil inorganic nitrogen and crop yields[J]. Scientia Agricultura Sinica, 2012, 45(9): 1741-1749.
[26] 田中偉, 王方瑞, 戴廷波, 等. 小麥品種改良過程中物質積累轉運特性與產量的關系[J]. 中國農業科學, 2012, 45(4): 801-808. Tian Z W, Wang F R, Dai T Betal. Characteristics of dry matter accumulation and translocation during the wheat genetic improvement and their relationship to grain yield[J]. Scientia Agricultura Sinica, 2012, 45(4): 801-808.
[27] 湯永祿, 李朝蘇, 吳曉麗, 等. 人工合成小麥衍生品種的物質積累、冠層結構及群體光合特性[J]. 中國農業科學, 2014, 47(5): 844-855. Tang Y L, Li C S, Wu X Letal. Accumulation of dry matter, canopy structure and photosynthesis of synthetic hexaploid wheat-derived high-yielding varieties grown in Sichuan Basin, China[J]. Scientia Agricultura Sinica, 2014, 47(5): 844-855.
[28] 張均華, 劉建立, 張佳寶, 等. 施氮量對稻麥干物質轉運與氮肥利用的影響[J]. 作物學報, 2010, 36(10): 1736-1742. Zhang J H, Liu J L, Zhang J Betal. Effects of nitrogen application rates on translocation of dry matter and utilization of nitrogen in rice and wheat[J]. Acta Agronomica Sinica, 2010, 36(10): 1736-1742.
[29] 孫旭生, 林琪, 李玲燕, 等. 氮素對超高產小麥生育后期光合特性及產量的影響[J]. 植物營養與肥料學報, 2008, 14(5): 840-844. Sun X S, Lin Q, Li L Yetal. Effects of nitrogen supply on photosynthetic characteristics at later developing stages and yield in super high-yield winter wheat[J]. Plant Nutrition and Fertilizer Science, 2008, 14(5): 840-844.
[30] Gaju O, Allard V, Martre Petal. Nitrogen partitioning and remobilization in relation to leaf senescence, grain yield and grain nitrogen concentration in wheat cultivars[J]. Field Crops Research, 2014, 155: 213-223.
[31] 肖凱, 張榮銑, 錢維樸. 氮素營養對小麥群體光合碳同化作用的影響及其調控機制[J]. 植物營養與肥料學報, 1999, 5(3): 235-243. Xiao K, Zhang R X, Qian W P. The effect and regulating mechanism of nitrogen nutrition on canopy photosynthetic carbon assimilatoin in wheat[J]. Plant Nutrition and Fertilizer Science, 1999, 5(3): 235-243.
[32] 蔡瑞國, 張敏, 戴忠民, 等. 施氮水平對優質小麥旗葉光合特性和子粒生長發育的影響[J]. 植物營養與肥料學報, 2006, 12(1): 49-55. Cai R G, Zhang M, Dai Z Metal. Effects of nitrogen application rate on flag leaf photosynthetic characteristics and grain growth and development of high-quality wheat[J]. Plant Nutrition and Fertilizer Science, 2006, 12(1): 49-55.
Effect of N rate on growth and grain filling of wheat in Sichuan Basin
LI Chao-su1, TANG Yong-lu1*, WU Chun1, WU Xiao-li1, HUANG Gang1, HE Gang2, GUO Da-ming2
(1CropResearchInstitute,SichuanAcademyofAgriculturalSciences/KeyLaboratoryofBiologyandGeneticBreedinginWheat(Southwest),MinistryofAgriculture,Chengdu610066,China;2AgriculturalBureauofJiangyouCity,JiangyouSichuan621700,China)
【Objectives】Nitrogen (N) has a significant effect on the accumulation, transport and distribution of photosynthetic products of wheat. In order to improve wheat yield potential in Sichuan Basin, effects of different N rates on dry matter production and grain filling of high-yield wheat cultivars were studied in Jiangyou City, Sichuan Province from 2011 to 2013. 【Methods】 A randomized block design with a split plot experiment was laid out and two cultivars, CM 104 and NM 836, were used as the main plot factors. Five N rates were set as sub plots: 0, 90, 135, 180 and 225 kg/hm2. Individual and population biomass, yield, yield components and filling parameters of the two cultivars were tested.【Results】 The yield, yield components, dry matter accumulation and leaf area index are all significantly affected by the N rates, cultivars and interannual climatic conditions. In the same N rate, the yield of CM 104 is higher than that of NM836. In the control, the average yield of NM 836 and CM 104 is 6638.9 and 6717.7 kg/hm2. In the N 135 kg/hm2treatment, the yields of two cultivars are more than 9000 kg/hm2and dry matter accumulation is more than 18000 kg/hm2. When the N rate is higher than 135 kg/hm2, the yield and dry matter accumulation increment become less. The relationship of yields and N rates can be described with a quadratic function, for CM104, y=-0.1056x2+44.023x+6724.6 and for NM836, y=-0.0934x2+35.991x+6651.5 (P<0.05). The theoretical maximum yield and the N rate for the highest yield for CM104 are higher than for NM 836. The increased N rates lead to the increment of dry matter accumulation at all the growing stages, but the differences in increment range are not significant from N rate of 135 to 225 kg/hm2and the highest dry matter accumulation after flowering and the contribution of dry matter translocation is in N rate of 135 kg/hm2. Although higher N rate is beneficial for the formation of effective spikes per hectare and grain numbers per spike, especially for the cultivar of CM 104, but not for the grain filling. The maximum grain-filling rate is decreased substantially in N rate of 180 kg/hm2for NM836, 225 kg/hm2for CM104. The 1000-grain weights in all the N treatments are lower than in control, and negative with N application rate increasing.【Conclusions】 The difference in the dry matter accumulation after flowering is the main reason for the different response to N rate for the two cultivars. Appropriate N application rate is very important for achieving high population biomass, increasing the dry matter accumulation and translocation to the grains after flowering. Under the fertile and less N loss paddy soil condition in Sichuan Basin, the suitable N rate for high yield is 135-150 kg/hm2.
nitrogen; wheat; dry matter production; grain filling
2014-06-09 接受日期: 2014-09-10 網絡出版日期: 2015-06-01
國家小麥產業技術體系(CARS-3);四川省科技計劃項目(2011NZ0098-15);四川省農業科學院優秀論文基金資助。
李朝蘇(1980—),男,山東巨野人,副研究員,主要從事作物高產栽培技術研究。Tel: 028-84504560, E-mail: xiaoli1755@163.com * 通信作者 Tel: 028-84504601, E-mail: ttyycc88@163.com
S147. 22
A
1008-505X(2015)04-0873-11