張睿,吳元欣,何云蔚,艾常春
?
Li3PO4摻雜的Li(Ni0.5Co0.2Mn0.3)O2鋰離子電池正極材料的流變相法合成及電化學性能表征
張睿1,吳元欣1,何云蔚2,艾常春1
(1武漢工程大學化工與制藥學院,湖北武漢430073;2武漢工程大學化學與環境工程學院,湖北武漢430073)
采用氫氧化物共沉淀法制備了鋰離子電池正極材料前驅體(Ni0.5Co0.2Mn0.3)(OH)2,并用流變相反應法合成了Li3PO4摻雜的Li(Ni0.5Co0.2Mn0.3)O2鋰離子電池正極材料。運用X射線粉末衍射和恒電流充放電對產物進行了結構和電化學性能的表征,結果表明Li3PO4摻雜的Li(Ni0.5Co0.2Mn0.3)O2具有標準的層狀α-NaFeO2結構,樣品為1 μm左右的片狀一次顆粒聚集而成的類球形二次顆粒。摻雜1%(質量分數)Li3PO4的Li(Ni0.5Co0.2Mn0.3)O2鋰離子電池在0.1C的倍率下首次放電比容量達到188.6 mA·h·g-1(2.2~4.6 VLi+/Li),30次循環后容量保持率為 92.9%。循環伏安、交流阻抗測試表明Li3PO4的摻雜可減少充放電過程中電解液和電極之間的電荷傳遞電阻和鋰離子擴散電阻,減小極化作用,從而提升了Li(Ni0.5Co0.2Mn0.3)O2材料的電化學性能。
流變相反應;合成;Li3PO4;摻雜;Li(Ni0.5Co0.2Mn0.3)O2;正極材料;電化學性能
鋰離子電池作為一種清潔的新能源材料已經運用到便攜式電子產品、電動汽車、儲能、工程機械、航天等領域[1-3]。
正極材料作為鋰離子電池最核心的部分,對電池的性能起到了決定性作用。相對于傳統的鈷酸鋰正極材料[4],具有α-NaFeO2層狀結構的LiNiCoMnO2(0<<1, 0<<1, 0<<1)鋰離子電池正極材料具有更高的可逆容量、更高的電壓平臺、更為低廉的價格以及毒性低等優點,近些年來逐漸成為研 究與應用的熱點。該材料在2.2~4.6 V 電壓范圍內,1.6 A·g-1電流下,首次放電容量達到200 mA·h·g-1,但實際應用中它仍有循環穩定性不好以及熱穩定性差等缺點[5-7]。
文獻[8]曾報道在LiMnPO4正極材料充放電過程中,在電極表面形成了Li3PO4,對材料性能及電解液的穩定性都有改善作用。文獻[9]研究表明在Li3PO4中,具有很強的PO鍵,這種PO鍵能夠在一定程度上增大Li+在電極與電解液間的遷移速率并且能夠減小化學腐蝕。Li(Ni0.5Co0.2Mn0.3)O2電極材料在高電壓(2.2~4.6 V)下充放電時,循環穩定性不理想,本文嘗試用Li3PO4對其進行摻雜改性。
在高溫固相法合成過程中進行摻雜通常采用的方法是在前驅體的合成中摻入改性離子,后經固相法煅燒得到含有摻雜離子的正極材料。流變相反應法是固體顆粒反應物經混合均勻后,加入適量溶劑,調制成黏稠狀的固-液混合態的流變相體系。該體系能充分利用固體顆粒表面積,反應進行更徹底,是一種高效、綠色的合成方法[10]。
本文通過流變相反應,在前驅體Ni0.5Co0.2Mn0.3(OH)2中加入Li3PO4經過高溫固相反應得到Li3PO4摻雜的Li(Ni0.5Co0.2Mn0.3)O2正極材料,并考察摻雜量對其電化學性能的影響。
1.1 實驗材料
NiSO4·6H2O (AR),CoSO4·7H2O (AR),MnSO4·H2O (AR),NH3·H2O (AR),NaOH (AR),H3PO4(AR),Li2CO3(AR)均購自國藥集團化學試劑有限公司。
1.2 材料表征
采用D8 ADVANCE型X射線粉體衍射儀(德國BRUKER,AXS公司)對樣品的晶型進行分析。采用JSM-6700F掃描電鏡(日本電子株式會社)分析樣品的形貌及微觀結構。
1.3 正極樣品的制備
將NiSO4·6H2O、CoSO4·7H2O、MnSO4·H2O按金屬摩爾比5:2:3配成總濃度為1 mol·L-1的溶液,加入到自制的紊流循環釜中[11-12],氮氣保護下進行共沉淀反應。將得到的沉淀洗滌、過濾、干燥得到前驅體(Ni0.5Co0.2Mn0.3)(OH)2。
將前驅體和Li2CO3按一定計量比混合均勻后,轉移至50 ml流變相反應釜,加入適量H3PO4,充分攪拌形成流變相體系并在80℃下反應6 h后真空干燥,將產物進行熱處理得到Li3PO4摻雜的Li(Ni0.5Co0.2Mn0.3)O2棕黑色粉體樣品[按摻雜Li3PO4含量的不同分別標注,不摻雜Li3PO4為S0,摻雜1%(質量分數,下同)Li3PO4為S1,摻雜3% Li3PO4為S2,摻雜5% Li3PO4為S3]。
1.4 電池的組裝與性能測試
將正極材料、乙炔黑、PVDF按質量比85:10:5攪拌混合均勻,涂布在鋁箔上,烘干后切片作為正極,金屬鋰作為負極,隔膜選用Celgard 2300,電解液選用1 mol·L-1LiPF6/(EC+DMC+DEC) (體積比1:1:1),在充氬氣的MBRAUN(O2<0.01 mg·L-1,H2O<0.01 mg·L-1)手套箱中組裝成CR2032型扣式電池。采用恒流充放電測試儀CT-2000A(武漢藍電電子有限公司)進行電池充放電測試,測試電壓范圍2.2~4.6 V (Li+/Li)。循環伏安測試和交流阻抗測試采用電化學工作站CHI-600D(上海辰華儀器有限公司)。
2.1 X射線衍射分析(XRD)與能譜分析(EDS)
圖1為S0~S3樣品的XRD譜圖。與標準譜圖(JCPDS 82-1495)對照可知,上述樣品均具有六方晶系的層狀α-NaFeO2結構,從屬空間點群。摻雜后樣品晶型結構基本無變化。根據文獻[13]Li3PO4的特征衍射峰位置2為22°和36.5°,S3樣品在222°處存在Li3PO4的一個特征峰,在236.5°處的衍射峰與Li(Ni0.5Co0.2Mn0.3)O2的(101)晶面峰重合。但在摻雜量更低的樣品中,Li3PO4的特征衍射峰不是很明顯。為了進一步準確分析各個樣品中的磷酸鋰含量,對樣品進行了電子能譜分析(EDS),結果如圖2所示。由圖可知,在能量為2.0 keV處S1~S3的樣品譜圖中均出現P元素的吸收峰。結合圖1可以說明,Li3PO4成分并不是包覆或簡單地夾雜在三元材料顆粒之間,而是進入Li(Ni0.5Co0.2Mn0.3)O2晶格結構中,故XRD衍射峰不是很明顯。

圖1 S0~S3樣品粉末X射線粉末衍射圖

圖2 S1~S3樣品粉末的EDS能譜分析
從圖1中衍射峰的相對強度值還可以看出,隨磷酸鋰添加量的增加,Li(Ni0.5Co0.2Mn0.3)O2的主體晶體結構也發生了微小的變化,(003)與(104)晶面峰的相對強度發生了變化,S0 ~ S3樣品的兩峰相對強度(003)/(104)值分別為1.08、1.22、1.20、1.06。根據文獻[14-16],(003)/(104)值反映了樣品中的陽離子混排程度,比值越大,混排程度越低,晶格排列更加有序,結構也就更穩定。本實驗所制備的S0 ~ S3樣品的(003)/(104)值均大于Ohzuku等[5,17]報道的Li(Ni1/3Co1/3Mn1/3)O2樣品的(003)/(104)值((003)/(104)0.8)。該結果說明,摻雜適量的Li3PO4對樣品Li(Ni0.5Co0.2Mn0.3)O2的晶格結構有一定影響。
2.2 掃描電鏡分析(SEM)
圖3分別為S0~S3樣品的掃描電鏡圖。根據文獻[18-19],球形形貌能夠增大材料與電解液之間的接觸面,從而有利于提升材料的電化學性能。本實驗制備的S0樣品粉末為類球形結構,是由1 μm左右的片狀一次顆粒聚集而成的類球形二次顆粒,顆粒與形貌特征與文獻報道一致。與S0樣品相比,Li3PO4摻雜后S1樣品表面變得更加光滑,顆粒有收縮現象,而S2和S3樣品二次顆粒的球形結構受到一定破壞,一次顆粒變得松散,可能對材料的循環穩定性造成不利影響。

圖3 S0~S3樣品粉末的SEM圖
2.3 電化學性能分析
圖4為S0~S3樣品在2.2~4.6 V電壓范圍內的首次充放電曲線。在0.1C的倍率下,S0、S1、S2、S3樣品的放電比容量分別為181.3、188.6、186.8和170.2 mA·h·g-1。S1、S2樣品的首次放電比容量略高于未摻雜的S0樣品,S3樣品的首次放電容量低于S0樣品。這表明,在摻雜量不大的情況下,Li(Ni0.5Co0.2Mn0.3)O2樣品的首次放電比容量變化不明顯。

圖4 S0~S3樣品首次充放電曲線(2.2~4.6 V,0.1C)
圖5為S0~S3樣品在2.2~4.6V電壓范圍內前30次放電循環曲線。0.1C倍率下30次的循環充放電后,S0、S1、S2、S3樣品的放電容量保持率分別為67.5%、92.9%、71.2%和67.8%。S1樣品30次的循環充放電后仍具有175.3 mA·h·g-1的放電比容量,循環穩定性明顯優于其他樣品,這表明,Li3PO4的摻雜量為1%時,有利于提高樣品的循環穩定性。

圖5 S0~S3樣品30次放電循環曲線(2.2~4.6 V, 0.1C)
為了進一步研究Li3PO4摻雜量為1%時,S1樣品具有更好的循環穩定性的原因,采用電化學工作站CHI600D對S0和S1樣品進行了循環伏安和交流阻抗測試。
圖6為S0和S1樣品30次充放電后的循環伏安曲線。掃描電壓范圍為2.2~4.6 V,掃描速率為0.1mV·s-1。S0樣品的氧化還原電位分別為3.97和3.61 V,差值為0.36 V;S1樣品的氧化還原電位分別為3.98和3.64 V,差值為0.34 V。氧化與還原電位的差值越小,電池的極化程度越小,因此S1樣品組裝的電池具有最低的電池內阻,有利于電池的循環穩定性。

圖6 S0、S1樣品30次充放電后循環伏安曲線
采用交流阻抗測試了S0和S1樣品在經過30次充放電循環后的電池內阻,圖7為兩者的交流阻抗及擬合電路圖,掃描頻率為10 mHz~100 kHz,振幅為10 mV。Nyquist阻抗譜中,高頻區的半圓表示電荷傳遞電阻(ct),低頻區的斜線表示鋰離子在電極體系中擴散產生的Warburg阻抗(w)[20-21]。經過等效電路模擬,S0、S1樣品的ct值分別為105和36.7 Ω,w值分別為0.251和0.08661 Ω。S1樣品的ct電阻遠低于未摻雜的S0樣品,w值也減小。表明Li3PO4摻雜后,電池內部的電子導電性和Li+擴散速率都得到了提高,從而降低了電極極化電壓,改善了循環性能,結合文獻[22-23],初步分析可能是在充放電的過程中,磷酸鋰作為富鋰成分在Li(Ni0.5Co0.2Mn0.3)O2層狀結構內部有利于電子和鋰離子的傳輸,降低了脫嵌鋰過程的電阻從而提升了電池的循環穩定性。

圖7 S0和S1樣品30次充放電循環后的交流阻抗譜圖以及擬合電路圖
本文采用流變相反應法合成了Li3PO4摻雜的Li(Ni0.5Co0.2Mn0.3)O2鋰離子電池正極材料,考察了Li3PO4摻雜量對電化學性能的影響。實驗結果表明摻雜1%Li3PO4的正極材料具有最優的充放電循環性能,30次充放電后,容量保持率為92.9%。進一步研究表明Li3PO4摻雜可同時降低充放電過程中電池內部的電荷傳遞電阻和鋰離子擴散電阻。為提高鋰離子電池三元正極材料的電化學性能提供了一種途徑。
[1] Armand M, Tarascon J M. Building better batteries [J]., 2008, 451 (7179): 652-657.
[2] Terada N, Yanagi T, Arai S,. Development of lithium batteries for energy storage and EV applications [J]., 2001, 100 (1/2): 80-92.
[3] Etacheri V, Marom R, Elazari R,. Challenges in the development of advanced Li-ion batteries: a review [J]., 2011, 4 (9): 3243-3262.
[4] Ellis B L, Lee Kyu Tae, Nazar L F. Positive electrode materials for Li-ion and Li-batteries [J]., 2010, 22 (3): 691-714.
[5] Yabuuchi N, Ohzuku T. Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2for advanced lithium-ion batteries [J]., 2003, 119 (6): 171-174.
[6] Koyama Y, Makimura Y, Tanaka I,. Systematic research on insertion materials based on superlattice models in a phase triangle of LiCoO2-LiNiO2-LiMnO2[J]., 2004, 151 (9): A1499-A1506.
[7] Jung Sung-Kyun, Gwon Hyeokjo, Hong Jihyun,. Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2cathode material in lithium ion batteries [J]., 2014, 4 (1): 94-98.
[8] Xiao J, Chernova N A, Upreti S,. Electrochemical performances of LiMnPO4synthesized from non-stoichiometric Li/Mn ratio [J].., 2011, 13 (40): 18099-18106.
[9] Liu Xizheng, Li Huiqiao, Yoo Eunjoo,. Fabrication of FePO4layer coated LiNi1/3Co1/3Mn1/3O2: towards high-performance cathode materials for lithium ion batteries [J]., 2012, 83: 253-258.
[10] Zhong Yanjun, Li Juntao, Wu Zhenguo,. LiMn0.5Fe0.5PO4solid solution materials synthesized by rheological phase reaction and their excellent electrochemical performances as cathode of lithium ion battery [J]., 2013, 234: 217-222.
[11] Lee M H, Kang Y J, Myung S T,. Synthetic optimization of Li[Ni1/3Co1/3Mn1/3]O2coprecipitation [J]., 2004, 50 (4): 939-948.
[12] Hu Yi (胡意), Ai Changchun (艾常春), Liu Yang (劉洋),. Turbulent flow cycle synthesis and characterization of super-fine lithium phosphate [J].(化工學報), 2014, 65 (3): 1099-1103.
[13] Zhao Shixi, Ding Hao, Wang Yanchao,. Improving rate performance of LiFePO4cathode materials by hybrid coating of nano-Li3PO4and carbon [J].,2013, 566: 206-211.
[14] Wang Jun, Zhang Minghao, Tang Changlin,. Microwave- irradiation synthesis of Li1.3NiCoMn1?x?yO2.4cathode materials for lithium ion batteries [J].,2012, 80: 15-21.
[15] Ding Yanhuai, Zhang Ping, Jiang Yong,. Effect of rare earth elements doping on structure and electrochemical properties of LiNi1/3Co1/3Mn1/3O2for lithium-ion battery [J]., 2007, 178 (13/14): 967-971.
[16] Kong Jizhou, Yang Xiaoyan, Zhai Haifa,. Synthesis and electrochemical properties of Li-excess Li1+x[Ni0.5Co0.2Mn0.3]O2cathode materials using ammonia-free chelating agent [J]., 2013, 580: 491-496.
[17] Koyama Y, Tanaka I, Adachi H,. Crystal and electronic structures of superstructural Li1?x[Co1/3Ni1/3Mn1/3]O2(0≤≤1) [J]., 2003, 119-121: 644-648.
[18] Kong Jizhou, Zhai Haifa, Ren Chong,. High-capacity Li(Ni0.5Co0.2Mn0.3)O2lithium-ion battery cathode synthesized using a green chelating agent [J]., 2013, 18 (1): 181-188.
[19] Liu Li, Tian Fanghua, Wang Xingyan,. Electrochemical behavior of spherical LiNi1/3Co1/3Mn1/3O2as cathode material for aqueous rechargeable lithium batteries [J]., 2011, 16 (2): 491-497.
[20] Chen Yuhong, Jiao Qishuai, Wang Liang,. Synthesis and characterization of Li1.05Co1/3Ni1/3Mn1/3O1.95X0.05(X=Cl, Br) cathode materials for lithium-ion battery [J]., 2013, 16 (9): 845-849.
[21] Wang Fuming, Yu Menghan, Hsiao Yiju,. Aging effects to solid electrolyte interface (SEI) membrane formation and the performance analysis of lithium ion batteries [J]., 2011, 6: 1014-1026.
[22] Sun Ke, Dillon S J. A mechanism for the improved rate capability of cathodes by lithium phosphate surficial films [J]., 2011, 13 (2): 200-202.
[23] Patil A, Patil V, Shin D W,. Issue and challenges facing rechargeable thin film lithium batteries [J]., 2008, 43 (8/9): 1913-1942.
Synthesis of Li3PO4-doped Li(Ni0.5Co0.2Mn0.3)O2by rheological phase method and its electrochemical performance as cathode material for Li-ion batteries
Zhang Rui1, WU Yuanxin1, HE Yunwei2, AI Changchun1
(School of Chemical Engineering & PharmacyWuhan Institute of TechnologyWuhanHubeiChinaSchool of Chemistry & Environmental EngineeringWuhan Institute of TechnologyWuhanHubeiChina
LiNiCoMnO2(0<<1, 0<<1, 0<<1) has become prosperous materials for the next generation of rechargeable lithium ion battery due to the synergistic effect of the three elements and their higher discharge voltage platform and charge-discharge capacity, but the cycle stability still need to be improved. The Ni0.5Co0.2Mn0.3(OH)2precursor was synthesized by using the method of hydroxide co-precipitation and the lithium phosphate doped Li(Ni0.5Co0.2Mn0.3)O2powders prepared by rheological phase reaction. The crystal structure and electrochemical performance of Li3PO4doped Li(Ni0.5Co0.2Mn0.3)O2powders were measured by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), galvanostatic charge-discharge, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The result indicated that Li(Ni0.5Co0.2Mn0.3)O2doped with Li3PO4powders maintained the laminated structure of α-type-NaFeO2, and the spherical powders were agglomerated with primary particles around 1 μm. The initial discharge capacity of Li(Ni0.5Co0.2Mn0.3)O2powders doped with 1% (mass) Li3PO4was 188.6 mA·h·g-1(2.2—4.6 VLi+/Li), and maintained 92.9% after 30 cycles at 0.1C. Moreover, CV results showed that oxidation and reduction potential of Li(Ni0.5Co0.2Mn0.3)O2powders doped with 1% Li3PO4were 3.98 and 3.64 V, the polarization of the sample was 0.34 V. The EIS tests showed that the charge transfer resistance and Warburg resistance of Li(Ni0.5Co0.2Mn0.3)O2powders doped with 1% Li3PO4were 36.7 and 0.08661 Ω. So that, Li3PO4components can reduce the charge transfer resistance and Li+diffusion resistance between electrode and electrolyte, and decrease the effect of polarization, thus promote the electrochemical performance of Li(Ni0.5Co0.2Mn0.3)O2.
rheological phase reaction; synthesized; Li3PO4; dope; Li(Ni0.5Co0.2Mn0.3)O2; cathode materials; electrochemical performance
2015-05-05.
10.11949/j.issn.0438-1157.20150562
TM 912.9
A
0438—1157(2015)08—3177—06
艾常春。
張睿(1989—),男,碩士研究生。
2015-05-05收到初稿,2015-05-15收到修改稿。
AI Changchun, aicchun@163.com