999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

異金屬簇{LnCu3}低溫磁制冷性能

2015-12-01 02:36:56李焓宋芬師唯馬建功程鵬
無機化學(xué)學(xué)報 2015年9期
關(guān)鍵詞:化學(xué)

李焓 宋芬 師唯 馬建功 程鵬

(南開大學(xué)化學(xué)學(xué)院,先進能源材料化學(xué)教育部重點實驗室,天津化學(xué)化工協(xié)同創(chuàng)新中心,天津300071)

異金屬簇{LnCu3}低溫磁制冷性能

李焓宋芬?guī)熚R建功程鵬*

(南開大學(xué)化學(xué)學(xué)院,先進能源材料化學(xué)教育部重點實驗室,天津化學(xué)化工協(xié)同創(chuàng)新中心,天津300071)

基于對已報道Gd-Cu配合物的文獻調(diào)研,發(fā)現(xiàn)一類{LnCu3}簇合物(Ln=Gd(1),Tb(2),Dy(3)),其CuII離子被GdIII離子有效分隔且分子內(nèi)部僅擁有鐵磁相互作用,因而對其進行了低溫磁制冷性能研究。在已報道實驗方法上加以改進,用一鍋法制備出一系列異金屬{LnCu3}簇合物(Ln=Gd(1),Tb(2),Dy(3)),并運用元素分析、紅外、單晶/粉末X-射線衍射等方法對其進行表征,以證明其同構(gòu)性及相純度。低溫磁熱效應(yīng)的研究結(jié)果表明簇合物1-3在ΔH=0~7 T下的最大磁熵變值(-ΔSm)分別為16.1(2 K),6.9(5 K)和8.1(5 K)J·kg-1·K-1。簇合物1與已報道的Gd-Cu簇合物的磁熵變對比再次證明了弱鐵磁相互作用在3d-4f分子磁制冷劑設(shè)計中起到重要的作用。

低溫磁制冷;磁熱效應(yīng);磁熵變;鐵磁相互作用

0 Introduction

Cryogenic molecular coolers refer to a family of clusters which can be used for cooling applications by means of magetocaloric effect(MCE)at both low-and ultra-low-temperatures[1-4].Studies in this field have rapidly developed over the past ten years[5-9].The performance of magnetic refrigerant can be evaluatedin terms of magnetic entropy change ΔSm,which is related to-Rln(2S+1),where R is the gas constant and S is the spin state.Much attention has been paid to Gd-based systems because of the high spin state S= 7/2 of GdIIIion[10-12],and many of them show excellent performance,evencomparabletothatofthe commercial cooler Gd3Ga5O12(GGG)[13].As progress moves far ahead,researchers start to realize the importance of magnetic coupling in designing better coolant.Attheverybeginning,ferromagnetic interactions,which can result in the appearance of low-lying excited states,were considered to be good for observing an enhanced MCE[14].However,later studies indicated that ferromagnetic coupling among the spin carriers would lower the maximum-ΔSmvalue due to the removal of spin degeneracy[15].Finally abalancewasbuiltthataweakferromagnetic interaction is favoured to obtain better refrigeration performance over a wide temperature and field range. Gd…Gd magnetic interactions are generally weak because of the“buried”4f orbitals,hence 3d ions couldbeintroducedforstrongerexchange interactions.On the other hand,couplings among 3d ions arealwaysstronglyantiferromagnetic,which would significantly reduce the-ΔSmvalue[16].Hence, structural topologies such as M-Gd-M(M=transition metal ions)arrangements are needed[1].

ThuswehavesurveyednumbersofLn-Cu complexes and selected a family of{LnCu3}clusters [LnCu3(H2edte)3(NO3)][NO3]2·0.5MeOH(H2edte=2′,2,2-(ethane-1,2-diyldinitrilo)tetra-ethanol;Ln=Gd(1);Tb (2);Dy(3))[17]to study their cryogenic MCE,evaluate and analyse the role of ferromagnetic interactions in molecular cooler design.

1 Experimental

1.1Materials and measurements

Allchemicalswereanalyticalgradeand commercial available,and were used without further purification.Diffractionintensitydataforsingle crystals of 1~3 were collected at 123(2)K on an OxfordSupernovadiffractometerwithgraphitemonochromated Mo-Kα radiation(λ=0.071 073 nm) using the ω-scan technique.Elemental analyses(C,H and N)were performed on a Perkin-Elmer 240 CHN elemental analyzer.Powder X-ray diffraction patterns were recorded on a D/Max-2500 X-ray diffractometer using Cu-Kα radiation(λ=0.154 18 nm).Magnetic measurementswereperformedonmicrocrystalline samplesusingaQuantumDesignSQUID-VSM magnetometer.The magnetic data were corrected for the diamagnetic contributionofboththesample holder and the diamagnetic correction estimated using Pascals constants.

1.2Syntheses of 1~3

1.2.1[GdCu3(H2edte)3(NO3)](NO3)2·0.5MeOH(1)

Complex 1 was prepared by a one-pot modified method based on ref 17.To a stirred solution of Cu (NO3)2·6H2O(0.45 mmol)in 5 mL MeOH was added H4edte(0.25 mmol)and NEt3(1.62 mmol)in 5 mL MeCN.The resulting blue solution was stirred for 15 min and then Gd(NO3)3·6H2O(0.20 mmol)in 5 mL MeCN was added and stirred for a further 10 min. The solution was then filtered,sealed in a vial and heated at 60°C.Blue rectangular plate-like crystals of 1 suitable for X-ray diffraction were obtained over 1 night,and were collected by filtration.Yield.43%, based on Gd.Anal.Calcd.for C30.5H68Cu3GdN9O21.5(%): C,29.24;H,5.47;N,10.06.Found:C,29.39;H, 5.81;N,10.02.

1.2.2[TbCu3(H2edte)3(NO3)](NO3)2·0.5MeOH(2)

Complex2wassynthesizedinaprocedure analogous to that employed for 1,except that Tb(NO3)3·6H2O was used in place of Gd(NO3)3·6H2O.Yield. 42%,based on Tb.

Anal.Calcd.for C30.5H68Cu3TbN9O21.5(%):C, 29.20;H,5.46;N,10.05.Found:C,29.58;H,5.79; N,10.17.

1.2.3[DyCu3(H2edte)3(NO3)](NO3)2·0.5MeOH(3)

Complex3wassynthesizedinaprocedure analogous to that employed for1,except that Dy(NO3)3· 6H2O was used instead of Gd(NO3)3·6H2O.Yield. 40%,based on Dy.Anal.Calcd.for C30.5H68Cu3DyN9O21.5(%):C,29.12;H,5.45;N,10.02.Found:C,29.52;H, 5.83;N,10.39.

Table 1 Crystallographic data of complexes 1~3

1.3Crystal structure determination

Single-crystal X-ray diffraction analysis,powder X-ray diffraction and elementary analysis data of 1~3 collected at room temperature are shown in Table 1 and Fig.1.

Allresultsindicatethatcomplexes1~3 synthesized via the one-pot method are essentially isostructural with the reported{LnCu3}clusters[17]and exhibithighpurity,whichareessentialforthe subsequent magnetic analysis.

Fig.1 Powder XRD patterns for complexes 1~3

Scheme 1Reaction procedures for syntheses of complexes 1~3The step-by-step method is from Ref 17

2 Results and discussion

2.1Syntheses

The title Ln-Cu clusters was synthesized by a step-by-step stop approach by Kettles et al[17].In the approach,a dimeric CuIIprecursor was prepared initially.Then the final products were obtained by reacting the precursor with corresponding Ln(NO3)3· xH2O salts in MeOH in the presence of NEt3.We modified the method in this work.A one-pot approach was developed to simplify the reaction procedure (Scheme 1).Under mild reaction conditions,large single crystals are formed via self-assembly of the reactants in mixed solvents.MeCN in the system mayact as a poor solvent to promote the crystallization.

Fig.2 Molecular structure of complex 1

2.2Crystal structure

Asdescribedinreference17,complex1 crystallizesintriclinicspacegroupP1andis constituted by the complex cation[GdCu3(H2edte)3(NO3)]2+combining with two nitrate ions for charge balance(Fig.2).The metallic cation cores consist of one Gd and three Cu ions,overall giving a T shape with Cu ions arranging around the central Gd ion(Fig. 3,left).Three Cu ions in the structure are separated by Gd ion without direct μ-O bridges associated with magnetic couplings(Fig.3,right).

Fig.3 Left:T-shaped metallic cores of{GdCu3}with μ2-O bridges;right:Coordination and bridging mode of H2edte2-

The Gd ion locates on the intersection of the T shape,coordinating to each of the neighbouring Cu ion through two μ2-OR-groups,affording three CuO2Gd units,which are favourable for ferromagnetic Cu-Gd interactions arising from the 3d(CuII)→5d(GdIII) electron transfer[18].

2.3Magnetic studies

Dc magnetic susceptibility data collected for 1~3 underanappliedfieldof1000Oeoverthe temperature range of 2~300 K are the same as for the reportedones,exhibitingsignificantferromagnetic interactions at low temperatures[17].The Weiss constant determined over the whole temperature range for 1 is 2.75 K.Such positivevalue also supports that the magnetic interaction of Gd…Cu is ferromagnetic, which is always the case for the CuO2Ln unit[18].

In most of the[GdCu]systems reported to date, Cu ions prefer to assemble together through various μ-ObridgesalthoughtheGd…Cucouplingis ferromagnetic in most cases,thus affording strong antiferromagnetic or ferrimagnetic interacions between the spin carriers[19-21].Such phenomenon therefore would lower the total ground spin state S which is crucial for the MCE behaviour.Hence in this case,Cuions are fully isolated,giving a cluster that adopts ferromagnetic interactions only between Gd and Cu ions.Inthoughtofthesebenefits,isothermal magnetization is performed in the temperature range of 2~10 K under the fields 0~7 T were performed to assess the magnetocaloric behaviour of complexes 1~3(Fig.4).

Fig.4 Field-dependent magnetization plots at indicated temperatures for 1(left),2(middle)and 3(right);Lines are visual guides

Fig.5 Experimental-ΔSmobtained from magnetization data at various temperatures and magnetic field changes for 1(top), 2(middle)and 3(bottom).Lines are visual guides

Table 2-ΔSmvalue based on ΔH at a given temperature for selected Gd-Cu complexes

The-ΔSmdata at different magnetic fields and temperaturescalculatedbyusingtheMaxwell equation-ΔSm(T)=∫[?M(T,H)/T]HdH are given in Fig.5.The maximum magnetic entropy changes for ΔH=0~7 T are 16.1(2 K),6.9(5 K)and 8.1(5 K)J· kg-1·K-1for 1~3,respectively.All the-ΔSmvalues are smaller than the expected ones judged by the function of-ΔSm=R[nLnln(2SLn+1)+nCuln(2SCu+1)]for three uncorrelated Cu and one Lnions(27.9,27.0 and 25.95 J·kg-1·K-1for 1,2 and 3 respectively). However,when the metal ions are ferromagnetically coupled,the total spin lowers to S=10/2(SGd+3SCu).Hencethemaximummagneticentropyatlow temperature decreases to 16.1 J·kg-1·K-1accordingly byadoptingthe new expression-ΔSm=Rln(2S+1). Such result is consistent with the experimental one, which may be ascribed to the existence of magnetic exchanges and magnetic anisotropies that remove the degeneracy and further split the energy levels of spin multiplets[15].The-ΔSmvalue of 16.1 J·kg-1·K-1for complex 1 is comparable to those observed for other reported Gd-Cuclusters[14,16,20,22-27].The MCEs for Gd-Cu molecular magnetic coolants are summarized in Table 2,as well as Figures for the intramolecular magneticinteractions.Intheseclusters,coupling between Cu ions are always strong antiferromagnetic, overall giving a ferrimagnetic coupling,sacrificing the coolingabilityatlowtemperature.Although ferromagnetic interactions against the good performance of MCEs,it helps to stabilize the-ΔSmin a wide temperature range[15].For1~3,their refrigeration ability does not rapidly decrease at high temperature and low field,exhibiting a relativesmoothchangetrend. Furthermore,complex 1 does not show the best magnetic refrigeration performance,but exhibits high atom economy,which is crucial for practical application as well.

3 Conclusions

Based on the survey of Gd-Cu complexes,a family of{LnCu3}clusters were selected to evaluate their cryogenic MCE owing to the isolated Ln-Cu arrangementaswellasthepureferromagnetic interaction.Amodifiedone-potsyntheticmethod based on reference[17]was then developed to simplify the reaction procedure.Studies on the cryogenic MCE indicate that complexes1~3possess the maximum magnetic entropy change(-ΔSm)of 16.1(2 K),6.9(5 K) and 8.1(5 K)J·kg-1·K-1for ΔH=0~7 T,respectively. Weak ferromagnetic interactions in the system sacrifice the performance of magnetic refrigeration at low temperature,however,enhance the cooling ability at higher temperature and lower fields.And complex 1 exhibits quit high atom economy,which is crucial for practical application in the future.

References:

[1]Zheng Y Z,Zhou G J,Zheng Z,et al.Chem.Soc.Rev.,2014, 43(5):1462-1475

[2]Liu J L,Chen Y C,Guo F S,et al.Coord.Chem.Rev., 2014,281:26-49

[3]SHI Peng-Fei(時鵬飛),XIONG Gang(熊剛),ZHANG Zhan-Yun(張戰(zhàn)運),et al.Sci.China-Chem.,2013,43(10): 1262-1271

[4]Cremades E,Gómez-Coca S,Aravena D,et al.J.Am.Chem. Soc.,2012,134(25):10532-10542

[5]Chang L X,Xiong G,Wang L,et al.Chem.Commun.,2013, 49(11):1055-1057

[6]Hou Y L,Xiong G,Shi P-F,et al.Chem.Commun.,2013,49 (54):6066-6068

[7]Shi P F,Zheng Y Z,Zhao X Q,et al.Chem.-Eur.J.,2012,18 (47):15086-15091

[8]Bing Y,Xu N,Shi W,et al.Chem.-Asian J.,2013,8(7):1412 -1418

[9]Li H,Shi W,Niu Z,et al.Dalton Trans.,2015,44(2):468-471

[10]Chen Y C,Qin L,Meng Z S,et al.J.Mater.Chem.A,2014, 2(25):9851-9858

[11]Lorusso G,Sharples J W,Palacios E,et al.Adv.Mater., 2013,25(33):4653-4656

[12]Zhang S,Duan E,Cheng P.J.Mater.Chem.A,2015,3(13): 7157-7162

[13]Tishin A M,Spichkin Y I.The Magnetocaloric Effect and its Application.Bristol and Philadelphia:IOP Publishing,2003.

[14]Langley S K,Chilton N F,Moubaraki B,et al.Chem.Sci., 2011,2(6):1166-1169

[15]Liu J L,Lin W Q,Chen Y C,et al.Inorg.Chem.,2013,52 (1):457-463

[16]Zhang H,Zhuang G L,Kong X J,et al.Cryst.Growth Des., 2013,13(6):2493-2498

[17]Kettles F J,Milway V A,Tuna F,et al.Inorg.Chem., 2014,53(17):8970-8978

[18]Andruh M,Ramade I,Codjovi E,et al.J.Am.Chem.Soc., 1993,115(5):1822-1829

[19]Hooper T N,Schnack J,Piligkos S,et al.Angew.Chem.Int. Ed.,2012,51(19):4633-4636

[20]Liu J L,Chen Y C,Li Q W,et al.Chem.Commun.,2013, 49(58):6549-6551

[21]Xiong G,Xu H,Cui J Z,et al.Dalton Trans.,2014,43(15): 5639-5642

[22]Hooper T N,Inglis R,Palacios M A,et al.Chem.Commun., 2014,50(26):3498-3500

[23]Xue S,Guo Y N,Zhao L,et al.Inorg.Chem.,2014,53(15): 8165-8171

[24]Dermitzaki D,Lorusso G,Raptopoulou C P,et al.Inorg. Chem.,2013,52(18):10235-10237

[25]Liu J L,Lin W Q,Chen Y C,et al.Chem.-Eur.J.,2013,19 (51):17567-17577

[26]Li Z Y,Wang Y X,Zhu J,et al.Cryst.Growth Des.,2013, 13(8):3429-3437

[27]Leng J D,Liu J L,Tong M L.Chem.Commun.,2012,48 (43):5286-5288

Cryogenic Magnetic Refrigeration Properties of Heterometallic{LnCu3}Cluster Family

LI HanSONG FenSHI WeiMA Jian-GongCHENG Peng*
(Department of Chemistry,Key Laboratory of Advanced Energy Materials Chemistry(MOE),and Collaborative Innovation Center of Chemical Science and Engineering(Tianjin),Nankai University,Tianjin 300071 China)

Based on the survey of Gd-Cu complexes in literatures,a family of{LnCu3}clusters(Ln=Gd(1),Tb (2),Dy(3))were selected to study the magnetocaloric effect(MCE)at low temperature due to their isolated Gd-Cu arrangement as well as the pure intramolecular ferromagnetic coupling.A modified one-pot synthetic method based on the reported result was developed to simplify the reaction procedure.Elementary analyses,IR,single crystal/powder X-ray diffraction measurements were carried out to determine the isomorphism and phase purity. Studies of MCEs indicate that complexes 1~3 have a maximum magnetic entropy change(-ΔSm)of 16.1(2 K), 6.9(5 K)and 8.1(5 K)J·kg-1·K-1for ΔH=0~7 T,respectively.Comparison of the MCE for{GdCu3}with the reported Gd-Cu clusters emphasizes the importance of weak ferromagnetic interactions in designing of 3d-4f molecular coolers.

cryogenic magnetic refrigeration;magnetocaloric effect;magnetic entropy change;ferromagnetic interaction

O614.121;O614.33+9;O614.341;O614.342

A

1001-4861(2015)09-1860-07

10.11862/CJIC.2015.248

2015-06-01。收修改稿日期:2015-07-14。

國家基金委創(chuàng)新團隊(No.21421001),教育部創(chuàng)新團隊(IRT13022和13R30),111引智計劃(B12015)和天津市自然科學(xué)基金(13JCZDJC32200)資助項目。

*通訊聯(lián)系人。E-mail:pcheng@nankai.edu.cn

猜你喜歡
化學(xué)
化學(xué)與日常生活
奇妙的化學(xué)
奇妙的化學(xué)
奇妙的化學(xué)
奇妙的化學(xué)
奇妙的化學(xué)
化學(xué):我有我“浪漫”
化學(xué):舉一反三,有效學(xué)習(xí)
考試周刊(2016年63期)2016-08-15 22:51:06
化學(xué)與健康
絢麗化學(xué)綻放
主站蜘蛛池模板: 欧美va亚洲va香蕉在线| 国产综合日韩另类一区二区| 专干老肥熟女视频网站| 最新午夜男女福利片视频| 成人字幕网视频在线观看| 日韩天堂在线观看| 国产精品欧美日本韩免费一区二区三区不卡 | 99久久精品国产精品亚洲| 98超碰在线观看| 欧美性色综合网| 黄片在线永久| 亚洲中文字幕在线精品一区| 视频二区中文无码| 亚洲第一视频区| 在线观看免费国产| 国产一级毛片在线| 亚洲人在线| 国产亚洲精品97AA片在线播放| 怡红院美国分院一区二区| 亚洲国产日韩一区| 色国产视频| 亚洲欧洲日韩综合色天使| 国产无码在线调教| 激情国产精品一区| 免费看美女自慰的网站| 国产福利影院在线观看| 成人综合在线观看| 日韩精品亚洲人旧成在线| 91po国产在线精品免费观看| 国产亚洲精品91| 国产精品va免费视频| 91热爆在线| 无码精品国产dvd在线观看9久| 亚洲资源站av无码网址| 波多野结衣亚洲一区| 狠狠做深爱婷婷久久一区| 日韩在线播放中文字幕| 国产精品亚欧美一区二区| 狠狠色丁香婷婷综合| 国产一级毛片yw| 97视频免费在线观看| 色哟哟国产成人精品| 99久久国产综合精品女同| 午夜高清国产拍精品| 亚洲人成电影在线播放| 国产精品免费p区| 亚洲欧美精品日韩欧美| 色综合手机在线| 麻豆精品在线| 九九九精品成人免费视频7| 国产成人无码Av在线播放无广告| 久久人人97超碰人人澡爱香蕉| 91av成人日本不卡三区| 欧美亚洲另类在线观看| 国产在线观看91精品亚瑟| 亚洲欧美日韩精品专区| 国产一区二区三区夜色| 精品人妻一区二区三区蜜桃AⅤ | 91九色最新地址| 久久黄色影院| 天堂av综合网| 夜夜操狠狠操| 91久久国产成人免费观看| 在线免费看黄的网站| 国产成人毛片| 色老二精品视频在线观看| 欧美一区中文字幕| 手机精品福利在线观看| 久久96热在精品国产高清| 亚洲一区二区三区中文字幕5566| 国产成人精品一区二区三在线观看| 日韩av电影一区二区三区四区| 99精品福利视频| 国产成人精品无码一区二 | 免费女人18毛片a级毛片视频| 亚洲国产第一区二区香蕉| 女同久久精品国产99国| 日韩免费中文字幕| 97人人做人人爽香蕉精品| 亚洲精品在线影院| 亚洲欧美国产五月天综合| 亚洲无码视频一区二区三区|