方 華 楊 淼 張偉晶 章建平張競超 章放香
貴陽醫學院附屬人民醫院麻醉科,貴州貴陽 550002
REM-PCL對體外循環犬心肌能量代謝的影響
方 華 楊 淼 張偉晶 章建平▲張競超 章放香
貴陽醫學院附屬人民醫院麻醉科,貴州貴陽 550002
目的 觀察犬體外循環(CPB)中REM-PCL對心肌能量代謝的影響。 方法 采用CPB心肌缺血再灌注模型,12只犬隨機分為REM-PCL組(RP組,n=6)和對照組(C組,n=6)。RP組和C組分別于轉機前靜脈注射0.2mg/kg REM-PCL及等量生理鹽水。分別于轉機前、缺血60min和再灌注60min時,測定心肌線粒體腫脹度(MSD)、丙二醛(MDA)含量、腺苷酸(ATP、AMP、ADP、EC、TAN)、活性氧(ROS)和總抗氧化能力(T-AOC)。分別于轉機前、再灌注30min和60min時測定平均動脈壓(MAP)、心輸出量(CO)和心率(HR)。結果 兩組與轉機前比較,缺血后MDA、MSD和ROS均增加,TAN、EC、T-AOC及ATP含量均下降(P<0.01);C組再灌注后MDA、MSD和ROS均增加(P<0.01),TAN、EC、T-AOC及ATP含量均下降(P<0.01);缺血60min和再灌注60min時RP組MDA、MSD和ROS均明顯低于C組(P<0.01),TAN、EC、T-AOC及ATP含量均明顯高于C組(P<0.01)。再灌注30min和60min時RP組MAP、CO和HR較C組恢復迅速(P<0.01)。 結論 REM-PCL通過保護心肌線粒體結構及改善缺血心肌能量代謝,減輕缺血心肌再灌注損傷。
瑞芬太尼聚己內酯;線粒體;體外循環
體外循環(cardiopulmonary bypass,CPB)中心肌細胞線粒體膜結構改變及抗氧化能力下降與心肌能量代謝障礙的發生密切相關[1-4]。瑞芬太尼聚己內酯(remifentanil-poly-caprolactone,REM-PCL)是一種自行研制開發并已獲得國家正式授權的新型高分子Mu阿片受體(Mu-opioid receptor,MOR)激動劑,我們的前期研究已證實REM-PCL預處理能夠模擬缺血預處理對缺血再灌注心肌產生保護作用。本研究擬觀察REM-PCL對CPB中犬心肌細胞抗氧化能力、線粒體膜結構變化及能量代謝狀況的影響,為REM-PCL在CPB中心肌缺血再灌注損傷的防治研究提供依據。
1.1 主要試劑
REM-PCL(中國發明專利號:200810045272.8)為自行研制開發的新型高分子MOR激動劑,已證實能有效激活MOR;單磷酸腺苷(adenosine monophosphate,AMP)、二磷酸腺苷(adenosine diphosphate,ADP)和三磷酸腺苷(adenosine triphosphate,ATP)標準品(美國Sigma公司);活性氧(reactive oxygen species,ROS)、總抗氧化能力(total anti-oxidation capacity,T-AOC)和丙二醛(malondialdehyde,MDA)檢測試劑盒(均為中國上海研吉生物科技有限公司)。
1.2 動物分組及模型的建立
健康成年雜種犬12只[貴陽醫學院動物實驗中心提供,動物合格證號為:SCXK(黔)2002-0001],體質量12~18kg,雌雄不拘,隨機分為REM-PCL組(RP組)和對照組(C組),每組6只。動物腹腔內注射2.5%戊巴比妥鈉25mg/kg麻醉后行氣管內插管,連接Puritan-Bennett呼吸機行機械通氣。股動、靜脈置管監測中心靜脈壓(CVP)和平均動脈壓(MAP)。采用胸骨正中切口,全身肝素化后右心房和左鎖骨下動脈分別插管,連接Sarns5000型人工心肺機(美國3M公司)、科威97型鼓泡式氧合器(廣東科威醫療用品有限公司)建立CPB。CPB前5min,調節循環溫度至28~30℃,RP組與C組分別經股靜脈注射REM-PCL 0.2mg/kg及等量生理鹽水。穩定并行循環5min后阻斷升主動脈,主動脈根部灌入4℃St.Thomas停搏液(10mL/kg),轉機流量為60~80mL/(min·kg),阻斷升主動脈60min。開放升主動脈后觀察循環情況60min。
1.3 觀察指標
分別于轉機前、缺血60min、再灌注60min時分別取心肌組織,采用Alliance 2695型高效液相色譜儀(美國Waters公司)測定ADP、AMP和ATP含量,并計算其細胞能荷(Energy charge,EC) 和總核苷酸(total adenine nucleotides,TAN)含量 [EC=(ATP+1/2ADP)/ TAN ,TAN= ATP+ADP+AMP][5];參照文獻[6-7],0~4℃冰浴中的燒杯中按照1∶9(w/v) 心肌組織比例分別加入10mol/L Tris-HCI,0.075mol/L sucrose,0.05mol/L EDTA,0.225mol/L D-mannitol pH 7.4分離液超聲勻漿及4℃中600×g離心5min后,分離液懸浮沉淀并再次超聲勻漿,4℃中600×g離心5min所得到的上清液再以4℃中10000×g離心10min,所得沉淀即為心肌細胞線粒體。線粒體懸液蛋白濃度采用考馬斯亮藍法測定并檢測線粒體懸液520nm處吸光度值作為線粒體腫脹度(mitochondrial swelling degree,MSD)指標。分別于轉機前、再灌注30min及60min時測定采用MP5型多功能監護儀(PHILIPS公司,美國)測定心輸出量(cardiac output,CO)、平均動脈壓(mean arterial pressure,MAP)和心率(heart rate,HR)血液動力學指標。
1.4 統計學方法
2.1 心肌組織T-AOC、腺苷酸(ATP、ADP、AMP及TAN)含量和EC的比較
缺血60min和再灌注60min時兩組與轉機前比較,T-AOC、腺苷酸和EC均下降(P<0.01)。缺血60min和再灌注60min時組間比較,RP組T-AOC、腺苷酸和EC均明顯高于C組(P<0.01)。見表1。
2.2 心肌ROS、MSD和MDA的比較
線粒體腫脹表現為520nm處吸光值的下降。缺血60min和再灌注60min時兩組ROS、MSD和MDA均較轉機前升高(P<0.01);缺血60min和再灌注60min時組間比較,RP組ROS、MSD和MDA均低于C組(P<0.01)。見表1。
2.3 血液動力學的比較
再灌注后C組與轉機前比較CO和MAP均下降(P<0.01),HR增快(P<0.01)。再灌注60min時RP組MAP、CO和HR恢復至轉機前水平。再灌注期間組間比較,RP組CO和MAP均高于C組(P<0.01),RP組HR均低于C組(P<0.01)。見表2。
CPB中心肌能量代謝障礙是術后心功能不全及低心輸出量綜合征(低心排) 等并發癥發生的主要原因之一[8-9]。線粒體是產生腺苷酸的主要場所,心肌舒縮功能的順利完成有賴于充足的腺苷酸供給,心肌能量代謝的維持依賴于線粒體結構與功能的完整性[10-11]。CPB期間ROS和MDA等炎性介質產生增加,可直接或間接造成心肌線粒體損傷,引起心肌能量代謝障礙。
表1 兩組心肌腺苷酸含量、ROS、T-AOC、MSD和MDA的變化

表1 兩組心肌腺苷酸含量、ROS、T-AOC、MSD和MDA的變化
注:與同組轉機前比較,*P<0.01;與同期C組比較,#P<0.01
?
表2 兩組血液動力學的變化

表2 兩組血液動力學的變化
注:與同組轉機前比較,△P<0.05 ,*P<0.01,與同期C組比較,#P<0.01
?
MSD不僅能夠評價線粒體損傷的程度還是反映線粒體功能與結構的敏感指標[12-13]。本研究觀察到,轉機后缺血心肌組織腺苷酸水平降低,與此同時,心肌ROS、MSD和MDA均明顯升高,再灌注后ROS、MSD和MDA升高更為顯著;提示轉機后腺苷酸合成減少,而再灌注期間雖然恢復心臟的供血供氧,但CPB中釋放的ROS和MDA等炎性介質引起缺血心肌線粒體損傷,造成心肌能量代謝障礙,而發生能量代謝障礙的心肌心功能恢復緩慢,心率增快,心肌收縮力下降,說明低溫缺血能夠引起心肌線粒體合成ATP能力受限[10],而缺血心肌恢復血供時ROS和MDA等炎性介質破壞心肌細胞線粒體膜的完整性并引起心肌能量代謝異常[14-15],造成左心功能障礙。
本實驗中,REM-PCL對線粒體膜結構有顯著的保護作用,這種作用主要表現在開放主動脈后的過程中,RP組線粒體腫脹度顯著低于相應時點C組,并逐漸恢復至CPB前水平,說明CPB中REMPCL能夠維護線粒體膜結構的完整性。REM-PCL預處理減輕心肌缺血再灌注損傷的機制可能與激活MOR有關。研究發現,REM-PCL可能通過活化MOR激活線粒體KATP通道進而抑制ROS和MDA等炎性介質的產生[16-18]。本研究從氧化應激和脂質過氧化反應研究入手,CPB前應用REMPCL預處理可增加心肌線粒體T-AOC,降低線粒體ROS活力和MDA含量,在一定程度抑制了炎性介質介導的放大效應,使過度的脂質過氧化反應得到控制;與此同時,CPB使用REM-PCL預處理后缺血心肌腺苷酸含量明顯升高, 且血液動力學指標恢復迅速。提示REM-PCL預處理在減輕心肌能量代謝障礙中起到重要作用,說明CPB前使用REMPCL預處理可有效抑制ROS和MDA等炎性介質對線粒體膜的氧化損傷及減輕線粒體氧化應激程度,并明顯改善心肌能量代謝,阻止缺血再灌注損傷所致的心肌腺苷酸丟失,從而有利于轉流后左心功能的改善。
[1] Athanasiou A,Smith PA,Vakilpour S,et al.Vanilloid receptor agonists and antagonists are mitochondrial inhibitors:How vanilloids cause non-vanilloid receptor mediated cell death[J].Biochem Biophys Res Commun,2007,354(1):50-55.
[2] Kavianipour M,Ronquist G,Wikstrom G,et al.Ischaemic preconditioning alters the energy metabolism and protects the ischaemic myocardium in a stepwise fashion[J].Acta Physiol Scand,2003,178(2):129-137.
[3] Wang L,Oka N,Tropak M,et al.Remote ischemic preconditioning elaborates a transferable blood-borne effector that protects mitochondrial structure and function and preserves myocardial performance after neonatal cardioplegic arrest[J].J Thorac Cardiovasc Surg,2008,136(2):335-342.
[4] Hsieh YJ,Wakiyama H,Levitsky S,et al.Cardioplegia and diazoxide modulate STAT3 activation and DNA binding[J]. Ann Thorac Surg,2007,84(4):1272-1278.
[5] Atkinso DE.The energy charge of the adenylate pool as a regulation parameter,interaction with feedback modifiers[J].Biochemistry,1986,7:4030.
[6] Shlafer M,Gallagher KP,Adkins S.Hydrogen peroxide generation by mitochondria isolated from regionally ischemic and nonischemic dog myocardium[J].Basic Res Cardiol,1990,85(4):318-29.
[7] Milei J,Forcada P,Fraga CG,et al.Relationship between oxidative stress, lipid peroxidation, and ultrastructural damage in patients with coronary artery disease undergoing cardioplegic arrest/reperfusion[J].Cardiovasc Res,2007,73(4):710-719.
[8] Chen YF,Tsai WC,Lin CC,et al.Effect of leukocyte depletion on endothelial cell activation and transendothelial migration of leukocytes during cardiopulmonary bypass[J]. Ann Thorac Surg,2004,78(2):634-642.
[9] Haugen O,Farstad M,Myklebust R,et al.Low perfusion pressure during CPB may induce cerebral metabolic and ultrastructural changes[J].Scand Cardiovasc J,2007,41(5):331-338.
[10] Cancherini DV,Queliconi BB,Kowaltowski AJ. Pharmacological and physiological stimuli do not promote Ca2+-sensitive K+channel activity in isolated heart mitochondria[J].Cardiovasc Res,2006,30(6):54-58.
[11] Wang L,Kinnear C,Hammel JM,et al.Preservation of mitochondrial structure and function after cardioplegic arrest in the neonate using a selective mitochondrial KATP channel opener[J].Ann Thorac Surg,2006,81(5):1817-1823.
[12] Palmeira CM,Rana MI,Frederick CB,et al.Induction of the mitochondrial permeability transition in vitro by shortchain carboxylic acids[J].Biochem Biophys Res Commun,2000,272(2):431-435.
[13] Jahania SM,Sengstock D,Vaitkevicius P,et al.Activation of the homeostatic intracellular repair response during cardiac surgery[J].J Am Coll Surg,2013,216(4):719-726.
[14] Zago EB,Castilho RF,Vercesi AE.The redox state of endogenous pyridine nucleotides can determine both the degree of mitochondrial oxidative stress and the solute selectivity of the permeability transition pore[J].FEBS Lett,2000,478(2):29-33.
[15] Zhang H,Gong DX,Zhang YJ,et al.Effect of mitochondrial aldehyde dehydrogenase-2 genotype on cardioprotection in patients with congenital heart disease[J].Eur Heart J,2012,33(13):1606-1614.
[16] Contreras L,Gomez-Puertas P,Iijima M,et al.Ca2+activation kinetics of the two aspartate-glutamate mitochondrial carriers aralar and citrin: Role in heart malate-aspartate NADH shuttle[J].J Biol Chem,2007,8(7):17-19.
[17] Mallet RT,Sun J.Antioxidant properties of myocardial fuels[J].Mol Cell Biochem,2003,253(1-2):103-111.
[18] Slagsvold KH,Moreira JB,Rognmo O,et al.Remote ischemic preconditioning preserves mitochondrial function and activates pro-survival protein kinase Akt in the left ventricle during cardiac surgery: a randomized trial[J].Int J Cardiol,2014(2):409-417.
Effect of REM-PCL on myocardial energy metabolism in dogs during cardiopulmonary bypass
FANG Hua YANG Miao ZHANG Weijing ZHANG J ianping ZHANG J ingchao ZHANG Fangxiang
Department of Anesthesiology, Guizhou Provincial People's Hospital Affiliated to Guiyang Medical College, Guiyang 550002, China
Objective To observe the effect of REM-PCL on myocardial energy metabolism in dogs during cardiopulmonary bypass. Methods Used CPB myocardial ischemia reperfusion model, 12 dogs were randomly divided into REM-PCL group (group RP, n=6) and control group (group C, n=6). RP group and C group respectively were given intravenous injection of 0.2mg/kg REM-PCL and normal saline before the driving of the rotary machine. Before the driving of the rotary machine, at 60 minutes of ischemia,and after 60 minutes reperfusion, myocardial mitochondrial swelling degree (MSD), malondialdehyde (MDA) content, adenylate (ATP, AMP, ADP, EC, TAN), reactive oxygen species (ROS) and total antioxidative capacity (T-AOC) were respectively determined. Before the driving of the rotary machine, at 60 minutes of ischemia,and after 60 minutes reperfusion, Mean arterial pressure (MAP), cardiac output (CO) and heart rate (HR) were measured. Results After ischemia, MDA, MSD and ROS of two groups were increased, and TAN, EC, T-AOC and ATP content were decreased(P<0.01). At 60 minutes of ischemia and reperfusion for 60 minutes, MDA, MSD and ROS of the RP group were significantly lower than those of C group (P<0.01), TAN, EC, T-AOC and ATP contents of the RP group were significantly higher than those of C group(P<0.01).At reperfusion for 30 minutes and 60 minutes, MAP, CO and HR of the RP group recovered more rapidly than those of group C (P<0.01). Conclusion Through the protection of myocardial mitochondrial structure and improve myocardial energy metabolism, REM-PCL can reduce myocardial ischemia reperfusion injury.
Remifentanil polycaprolactone; Mitochondrion; Cardiopulmonary bypass
R615
A
2095-0616(2015)07-19-04
2015-01-23)
貴州省科學技術廳基金資助項目(黔科合LH字[2014]7021號;貴州省科學技術廳基金資助項目(黔科合LH字[2014]7027號)。
▲通訊作者