999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

一個具有四方錐和三角雙錐構型的線性混合橋連三核銅配合物

2015-12-05 10:25:17吳迪余柱高大志王欣沈旋朱敦如
無機化學學報 2015年8期
關鍵詞:南京實驗室

吳迪 余柱 高大志 王欣 沈旋 朱敦如*,,2

(1南京工業大學化工學院,材料化學工程國家重點實驗室,南京210009)

(2南京大學配位化學國家重點實驗室,南京210093)

一個具有四方錐和三角雙錐構型的線性混合橋連三核銅配合物

吳迪1余柱1高大志1王欣1沈旋1朱敦如*,1,2

(1南京工業大學化工學院,材料化學工程國家重點實驗室,南京210009)

(2南京大學配位化學國家重點實驗室,南京210093)

以反式-3-[N,N-二(2-吡啶甲基)氨甲基]-2-羥基-5-甲基苯甲醛肟(H2L)為配體,合成了一個新穎的線性三核銅(Ⅱ)配合物[Cu3L2(py)](ClO4)2·2THF(1)(py=吡啶,THF=四氫呋喃),對其進行了紅外、紫外、熱重和單晶結構表征。配合物1屬于單斜晶系,空間群為C2/c,a=2.969 0(7)nm,b=1.302 8(3)nm,c=2.057 4(9)nm,β=132.435(2)°,V=5.873(3)nm3,Z=4,R1=0.047 9。單晶結構表明,這是一個混合橋(-N-O-和μ2-O-)連的線性五配位三核銅(Ⅱ)配合物:每個銅均由3個氮原子和2個氧原子配位,中間的銅為扭曲的三角雙錐構型,而兩側的銅為扭曲的四方錐構型。變溫磁化率顯示1的銅離子間存在中等的反鐵磁性(J=-33.3(5)cm-1)。

三核銅;五配位;晶體結構;混合橋連;反鐵磁性

Trinuclear Cu(Ⅱ)complexes have received increasing attentions as models for the active sites of multicopper oxidases such as ascorbate oxidases,laccase and ceruloplasmin[1-2].A relatively large number of trinuclear Cu(Ⅱ)complexes have been reported over the past three decades[3-22].Generally,the trinuclearCu(Ⅱ)complexes can be classified as triangular[3-7]and linear arrangements[8-22].Up to now,linear trinuclear Cu(Ⅱ)complexes with respective coordination numbers of 4,5,4[9,14];4,5,5[20];5,4,5[19,21-22];5,5,5[8-13,15-17];5, 6,5[18,21];5,5,6[10]and 6,6,6[10],have been found. However,most of trinuclear Cu(Ⅱ)complexes with respective coordination numbers of 5,5,5 show the distorted square pyramidal configuration.Examples of five -coordinated trinuclear Cu(Ⅱ)complexes containing both the distorted square pyramidal and trigonal bipyramidal configuration are very limited[8].Herein we present the synthesis and crystal structure of a rare linear pentacoordinate trinuclear Cu(Ⅱ)complex:[Cu3L2(py)] (ClO4)2·2THF(1)(H2L=(E)-3-[N,N-di(2-pyridylmethyl) aminomethyl]-2-hydroxyl-5-methylbenzaldehyde oxime, py=pyridine,THF=tetrahydrofuran),showing the simultaneous presence of the distorted square pyramidal and the trigonal bipyramidal geometries.Moreover,the central trigonal bipyramidal Cu(Ⅱ)and the terminal square pyramidal Cu(Ⅱ)ions are linked by-N-O-/μ2-O-mixed-bridging,which is also uncommon within trinuclear Cu(Ⅱ)complexes[11,17,22].The spectral characterization,thermal stability and magnetic property of 1 are also reported.

1Experimental

1.1 Materials and measurements

All chemicals used were of analytical grade.Solvents were purified by conventional methods.The ligand H2L was prepared according to the literature method[23]and its structure is shown in Scheme 1.Elemental analyses(C,H,N)were carried out with a Thermo Finnigan Flash 1112A elemental analyzer.IR spectrum was recorded on a Nicolet Avatar 380 FT-IR instrument with KBr pellets in the range of 4 000~400 cm-1.UV-Vis spectra were recorded on a Perkin-Elmer Lambda 35 spectrometer at room temperature in methanol solution.Thermogravimetric analysis(TGA) was performed on a NETZSCH STA 449F3 thermal analyzer instrument under flowing N2with a heating rate of 10℃·min-1.The temperature dependence of the magnetic susceptibility for 1 was measured on a Quantum Design MPMS-7 SQUID magnetometer in the range of 1.8~300 K under 2 000 Oe of external field.Diamagnetic correction was made with Pascal′s constants.

Scheme 1Structure of H2L

1.2 Synthesis of 1

A solution of Cu(OAc)2·H2O(0.186 3 mmol)in distilled water(0.8 mL)was added dropwise to a solution of H2L(0.124 2 mmol)in EtOH(1 mL).The mixture was stirred at room temperature for ten minutes, then the pyridine(5 μL)was added.Half an hour later,a solution of NaClO4·H2O(0.124 2 mmol)in distilled water(0.2 mL)was added and the dark green precipitate was immediately formed.After stirred for 8 h,the precipitate was separated by filtration,then washed with THF and dried under vacuum to give 55.4 mg(75%)of the complex.Diffusion from THF to the solution of the complex in pyridine afforded dark green single crystals of 1 suitable for X-ray crystallographic analysis.Elemental Analyses Calcd.for C55H61Cl2Cu3N9O14(%):C 49.53,H 4.61,N 9.45;Found(%): C 49.20,H 4.54,N 9.80.IR data(KBr,cm-1):ν(C=N) 1 605(s);ν(C=C),1 465(m),1 442(s);ν(Ar-O)1 293 (m);ν(C-O)1 027(s);ν(Cl-O)1 085(vs),936(w), 627(s).

1.3 Crystal structure determination

The well-shaped single crystals of 1 were selected for X-ray diffraction study.The unit cell parameters and intensity data were collected at 296(2)K on a Bruker SMART APEXⅡCCD diffractometer using a graphite-monochromated Mo Kα(λ=0.071 073 nm) radiation.The structure was solved by direct methods and refined on F2by full-matrix least squares procedures using SHELXTL software[24].All non-hydrogen atoms were anisotropically refined.Atoms O4,O5 andO6 of ClO4-anion were found to be highly disordered with occupancy of 0.50.All H atoms were located from a difference map and refined isotropically.Crystalographic data are listed in Table1 .Selected bond distances and angles are given in Table2 .

CCDC:916132.

Table1 Crystal data and structure refinement for 1

Table2 Selected bond distances(nm)and bond angles(°)for 1

2Results and discussion

2.1 Crystal structure

Single crystal X-ray structure analysis shows that 1 crystallizes in the monoclinic space group C2/c.The asymmetric unit consists of three Cu(Ⅱ)cations,two L2-ligands,one pyridine,two perchlorate anions and two THF molecules.The structure of 1 with the atomic labeling system is shown in Fig.1 a.The central Cu1 cation is situated on a two-fold axis which also goes through N5 and C24 atoms of pyridine.The Cu1 cation is coordinated by three nitrogen atoms(N4,N4iand N5)in the equatorial plane and two phenolic oxygen atoms(O1 and O1i)in the axial positions to form a distorted trigonal bipyramidal configuration with the geometric parameter τ=0.623[25](Fig.1 b),whereas the peripheral Cu2 cation exhibits a distorted square pyramidal arrangement(τ=0.23)where three nitrogen atoms(N1,N2 and N3)and one oxime group O2iatom form the basal plane and the phenolic O1 atom is in the apical position(Fig.1 c).To the best of our knowledge,the simultaneous presence of a square pyramidal arrangement and a trigonal bipyramidal configuration within pentacoordinate trinuclear Cu(Ⅱ)complexes is very rare[8].In addition,Cu1 and Cu2 atoms are double bridged by the phenolic μ2-O1-and oxime group (-O2i-N4i-),resulting in a linear trinuclear Cu(Ⅱ)complex(∠Cu2…Cu1…Cu2i=161.64°).The square-pyra-midal Cu2 displaces 0.022 8 nm out of the basal plane consisting of N1,N2,N3 and O2i.The bond lengths of Cu-N are similar to those observed in the related trinuclear Cu(Ⅱ)complexes[8-13]though the Cu2 -N2 and Cu2-N3 distances in 1 are nearly equal.Interestingly,the Cu2-O1 bond length is 0.027 2 nm longer than the Cu2-O2ione,while the Cu1-O1 bond distance is 0.022 4 nm shorter than Cu2-O1 one. Moreover,the Cu1-N5 distance is 0.033 3 nm longer than Cu1-N4 one(Table2 ).The distance of Cu1 and Cu2 atoms is 0.340 9 nm,which is larger than the sum of van der Waals radii of two copper atoms(0.28 nm),revealing no metallphilic Cu…Cu interaction in 1.

Fig.1 (a)Projection of the structure of 1 with the atomic labeling system;(b)Distorted trigonal bipyramidal configuration of Cu1;(c)Distorted square pyramidal arrangement of Cu2

Table3 Hydrogen bonding and π-π stacking interactions in 1

There are a lot of C-H…O hydrogen bond interactions in the structure of 1(Table3 ),which is significantly associated with the closer crystal packing. Mainly,these hydrogen bond interactions can be clas-sified as three kinds:(1)one intramolecular C22-H22A…O1 hydrogen bond involving pyridine and phenolic oxygen;(2)one intermolecular C28-H28B…O2iiihydrogen bond involving THF and oxime group′s oxygen;(3)seven types of intermolecular C-H…O hydrogen bond involving ClO4-.In addition,there are one kind of intermolecular edge-to-face C-H…π interaction involving-CH3and phenolic ring(C20iv-H20Biv…Cg1,Cg1 is the centroid of the phenolic ring) and one kind of offset face-to-face π…π interaction between two pyridyl rings with the Cg2…Cg3iidistance of 0.364 3 nm and a dihedral angle of 6.9°(Cg2 and Cg3 is the centroid of pyridyl with N1 and pyridyl with N2,respectively).These interactions connect six trinuclear Cu(Ⅱ)molecules to form a 2D layer with THF solvents and ClO4-anions filled in the channel of a macrocycle(Fig.2 ).

Fig.2 2D layer structure of 1 formed by face-to-face π…π stacking and edge-to-face C-H…Cg1 interactions

2.2 Spectral characterization

In the IR spectrum of 1,a strong band at 1 605 cm-1can be assigned to the C=N stretching vibration of the coordinated pyridyl ring.A strong band at 1 027 cm-1is attributed to the C-O stretching vibration of THF.The three bands at 1 085(vs),936(w)and 627 (s)cm-1,are attributable to the IR-allowed ν mode, IR-forbidden ν mode and the non-degenerate ClO3symmetrical bending vibrations of the ClO4-anion, respectively[26-28].These features are in agreement with the results of X-ray analysis.

The UV-Vis spectrum of 1 in CH3OH solution is shown in Fig.3 ,an intense band at 205 nm is attributed to π-π*transition of benzene ring(206 nm observed in the free H2L ligand).Two shoulder bands at 234 and 256 nm are attributed to n-π*transition of phenolic group in contrast to the single band at 262 nm for the free H2L ligand.A band due to π-π*transition of oxime group[29]is found at 291 nm,a blue shift compared with the band at 319 nm for the free H2L ligand,showing the conjugation between phenolic ring and oxime group decreases in 1 due to the coordination of the L2-ligand.A band at 340 nm can be attributed to LMCT[23].

Fig.3 UV spectra of 1 and H2L ligand in CH3OH

Fig.4 TGA curve of 1

2.3 TG analysis

TGA of 1(Fig.4 )was carried out in the range of 25~800℃under nitrogen atmosphere.The first weight loss of 11%from 25 to 138℃is attributed to the loss of two THF molecules(Calcd.10.8%).The next weight loss of 5.8%from 138 to 225℃correspondstothelossofthecoordinatedpyridine molecule(Calcd.6.7%).After that,1 began to decom-pose.

2.4 Magnetic property

As shown in Fig.5 ,the observed χMT value of 1 at 300 K is 1.25 cm3·K·mol-1,which is slightly larger than expected for three isolated Cu(Ⅱ)S=1/2 ions (1.125 cm3·K·mol-1for g=2.0).When further cooling, the χMT value decreases to reach 0.45 cm3·K·mol-1at 30 K that remains constant down to 5 K and decreases again below this temperature.This behavior shows the presence of predominant antiferromagnetic interactions between the Cu(Ⅱ)ions.In fact,the presence of a plateau with a value of about 0.4 cm3·K·mol-1is expected for an antiferromagnetically coupled linear trinuclear Cu(Ⅱ)complex where the central Cu(Ⅱ)ion is coupled with the two terminal ones,but there is no coupling between the terminal ones.It corresponds to the spin ground state of S=1/2 for the trinuclear complex.According to these data and the structure of 1, we can fit the magnetic properties to a simple symmetrical linear trimer Cu(Ⅱ)model[11]:

J is based on the spin Hamiltonianwith S=1/2,N,k,T and β have the common meanings.The best fitting results from 1.8~300 K gave:g=2.127(2), J=-33.3(5)cm-1a ndzj′=-0.66(1)cm-1withR=The negative J value indicates the medium antiferromagnetic coupling between Cu(Ⅱ)ions in 1[30].In addition,the present J value is also compared with those observed in the related linear trinuclear Cu(Ⅱ)complexes[11,18]. The negative value of zj′indicates that the face-to-face π…π stacking of pyridine rings of the ligands mediates the very weak antiferromagnetic interaction between molecules and corresponds to the decrease of χMT below 5 K.

Fig.5 Thermal variation of the χM(○)and χMT(□)for 1

3Conclusions

A novel pentacoordinate trinuclear Cu(Ⅱ)complex [Cu3L2(py)](ClO4)2·2THF with(E)-3-[N,N-di(2-pyridylmethyl)aminomethyl]-2-hydroxyl-5-methylbenzaldehyde oxime(H2L)has been synthesized and characterized by IR,UV-Vis,TGA and single crystal X-ray analysis. The central trigonal bipyramidal Cu(Ⅱ)and two terminal square pyramidal Cu(Ⅱ)ions are linked by-N-O-/ μ2-O-mixed-bridging to from a linear trinuclear Cu(Ⅱ)arrangement.A medium antiferromagnetic coupling between adjacent Cu(Ⅱ)ions dominates the magnetic property of this complex.

[1]Rivera-Carrillo M,Chakraborty I,Mezei G,et al.Inorg.Chem., 2008,47:7644-7650

[2]Yang L,Powell D R,Klein E L,et al.Inorg.Chem.,2007, 46:6831-6833

[3]ávila-Torres Y,López-Sandoval H,Mijangos E,et al.Polyhedron,2013,51:298-306

[4]Nicola C D,Garau F,Gazzano M,et al.Cryst.Growth Des., 2012,12:2890-2901

[5]Ferrer S,Lloret F,Pardo E,et al.Inorg.Chem.,2012,51:985 -1001

[6]Nicola C D,Forlin E,Garau F,et al.J.Organomet.Chem., 2012,714:74-80

[7]Qin T,Gong J,Ma J,et al.Chem.Commun.,2014,50:15886-15889

[8]Hasenknopf B,Lehn J M,Baum G,et al.Proc.Natl.Acad. Sci.,1996,93:1397-1340

[9]Zhao L,Thompson L K,Xu Z,et al.J.Chem.Soc.,Dalton Trans.,2001:1706-1710

[10]Sepp?l? P,Colacio E,Mota A J,et al.Dalton Trans.,2012, 41:2648-2658

[11]Biswas A,Drew M G B,Gómez-García C J,et al.Inorg. Chem.,2010,49:8155-8163

[12]Kannan S,Pillai M R A,Droege P A,et al.Inorg.Chim. Acta,1997,254:397-400

[13]Dey S,Sarkar S,Mukherjee T,et al.Inorg.Chim.Acta,2011, 376:129-135

[14]Singh J,Hundal G,Corbella M,et al.Polyhedron,2007,26: 3893-3903

[15]Nie F M,Dong Z Y,Lu F,et al.J.Coord.Chem.,2010,63: 4259-4270

[16]Chen X,Zhan S,Hu C,et al.J.Chem.Soc.Dalton Trans., 1997:245-250

[17]Gehring S,Fleischhauer P,Paulus H,et al.Inorg.Chem., 1993,32:54-60

[18]Jiang J,Chu Z,Huang W.Inorg.Chim.Acta,2009,362: 2933-2936

[19]Chen L F,Cao X Y,Li Z J,et al.Inorg.Chem.Commun., 2008,11:961-964

[20]Luo W,Meng X G,Xiang J F,et al.Inorg.Chim.Acta,2008, 361:2667-2676

[21]Botana L,Ruiz J,Seco J M,et al.Dalton Trans.,2011,40: 12462-12471

[22]Zhu Q,Tian C,Shen C,et al.CrystEngComm,2013,15:2120-2126

[23]Silva N M L,Pinheriro C B,Chacon E P,et al.J.Braz. Chem.Soc.,2011,22:660-668

[24]Sheldrick G M.Acta Crystallogr.,2008,A64:112-122

[25]Addison A W,Rao T N,Reedijk J,et al.J.Chem.Soc.Dalton Trans.,1984:1349-1356

[26]Lu W,Zhu D R,Xu Y,et al.Struct.Chem.,2010,21:237-244

[27]CHEN Lang(陳浪),CHEN Hui-Min(程慧敏),JIANG Jing-Jing(江靜靜),et al.Chinese J.Inorg.Chem.(無機化學學報),2012,28:381-385

[28]GAO Da-Zhi(高大志),WANG Ruo-Xu(王若徐),YE Fan(葉帆),et al.Chinese J.Inorg.Chem.(無機化學學報),2013, 29:2438-2444

[29]Joel T,Georgina A á,Elia P B,et al.Spectrochim.Acta A, 2007,66:879-883

[30]Wang X Z,Zhu D R,Xu Y,et al.Cryst.Growth Des.,2010, 10:887-894

A Mixed-Bridged Linear Trinuclear Copper(Ⅱ)Complex Containing Both Square Pyramidal and Trigonal Bipyramidal Configuration

WU Di1YU Zhu1GAO Da-Zhi1WANG Xin1SHEN Xuan1ZHU Dun-Ru*,1,2
(1College of Chemical Engineering,State Key Laboratory of Materials-oriented Chemical Engineering,
Nanjing Tech University,Nanjing 210009,China)
(2State Key Laboratory of Coordination Chemistry,Nanjing University,Nanjing 210093,China)

A novel trinuclear copper(Ⅱ)complex,[Cu3L2(py)](ClO4)2·2THF(1)(H2L=(E)-3-[N,N-di(2-pyridylmethyl) aminomethyl]-2-hydroxyl-5-methylbenzaldehyde oxime,py=pyridine,THF=tetrahydrofuran),has been successfully synthesized and characterized.1 crystallizes in monoclinic system with space group C2/c,a=2.969 0(7)nm,b= 1.302 8(3)nm,c=2.057 4(9)nm,β=132.435(2)°,V=5.873(3)nm3,Z=4 with final R1=0.047 9.X-ray crystallography analysis reveals that 1 is a mixed-bridged(-N-O-/μ2-O-)linear tricopper(Ⅱ)complex with all the copper cations being five-coordinated by three N and two O atoms:the central Cu(Ⅱ)in a distorted trigonal bipyramidal configuration,whereas the peripheral Cu(Ⅱ)in a distorted square pyramidal arrangement.Magnetic susceptibility measurement indicates that there is a medium antiferromagnetic exchange coupling between the Cu(Ⅱ)ions with a J value of-33.3(5)cm-1.CCDC:916132.

trinuclear copper;pentacoordinate;crystal structure;mixed-bridged;anti-ferromagnetism

O614.121

A

1001-4861(2015)08-1619-07

10.11862/CJIC.2015.220

2015-04-19。收修改稿日期:2015-06-02。

國家自然科學基金資助項目(No.21171093,21476115),南京大學配位化學國家重點實驗室開放課題基金資助項目。

*通訊聯系人。E-mail:zhudr@njtech.edu.cn;會員登記號:S060015982P。

猜你喜歡
南京實驗室
南京比鄰
“南京不會忘記”
環球時報(2022-08-16)2022-08-16 15:13:53
電競實驗室
電子競技(2020年4期)2020-07-13 09:18:06
電競實驗室
電子競技(2020年2期)2020-04-14 04:40:38
電競實驗室
電子競技(2019年22期)2019-03-07 05:17:26
電競實驗室
電子競技(2019年21期)2019-02-24 06:55:52
電競實驗室
電子競技(2019年20期)2019-02-24 06:55:35
電競實驗室
電子競技(2019年19期)2019-01-16 05:36:09
南京·九間堂
金色年華(2017年8期)2017-06-21 09:35:27
又是磷復會 又在大南京
主站蜘蛛池模板: 97se亚洲| 国产精品思思热在线| 亚洲无码精彩视频在线观看| 91精品综合| 成人午夜久久| 亚洲va在线∨a天堂va欧美va| 国产91全国探花系列在线播放 | 97亚洲色综久久精品| 国内精品久久久久久久久久影视 | 青青草国产在线视频| 成人国产精品2021| 9966国产精品视频| 亚洲视频无码| 无码专区在线观看| 国产成人8x视频一区二区| 国产毛片基地| 成年午夜精品久久精品| h视频在线观看网站| 女同久久精品国产99国| 欧美一区福利| 色噜噜狠狠色综合网图区| 欧美区一区二区三| 99视频在线观看免费| 亚洲欧美日韩中文字幕在线| 99在线观看国产| 国产日产欧美精品| 国产精品原创不卡在线| 一个色综合久久| 国产福利小视频高清在线观看| 伊人久久福利中文字幕| 精品福利国产| 日韩高清一区 | 另类重口100页在线播放| 一级毛片免费观看久| 国产成人三级| 成人自拍视频在线观看| 美女被躁出白浆视频播放| 亚洲精品国产自在现线最新| 99精品视频九九精品| 一本视频精品中文字幕| 亚洲精品无码人妻无码| 无码福利日韩神码福利片| 好吊妞欧美视频免费| 91小视频在线观看| 啪啪国产视频| 国产成人精品2021欧美日韩| 国产原创演绎剧情有字幕的| 99精品国产自在现线观看| 91在线精品免费免费播放| 国产成人综合网在线观看| 精品国产Av电影无码久久久| 国产高清精品在线91| 中文精品久久久久国产网址| 熟妇丰满人妻| 亚洲成a人在线播放www| 欧美人与动牲交a欧美精品| 日本影院一区| 99这里精品| 狼友视频国产精品首页| 色综合久久久久8天国| 国产男女免费完整版视频| 无码中文字幕精品推荐| 色婷婷成人网| 免费一级毛片在线播放傲雪网| 亚洲婷婷在线视频| 日韩 欧美 小说 综合网 另类| 国产成人无码Av在线播放无广告| 乱人伦99久久| 久草美女视频| 日韩无码视频播放| 亚洲三级网站| 日韩精品一区二区三区中文无码| 久久99精品国产麻豆宅宅| 免费无码网站| 亚洲日韩Av中文字幕无码| 性欧美在线| 亚洲一区二区三区香蕉| 亚洲日本一本dvd高清| 亚洲中文精品人人永久免费| 成人在线天堂| 91精品人妻一区二区| 亚洲男人的天堂久久精品|