999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

PMBP縮4-甲基水楊酰肼銅、鋅配合物:合成、結構及鋅配合物的熒光性質

2015-12-05 10:25:22李曉靜蔡紅新吳偉娜侯瑩王震
無機化學學報 2015年8期

李曉靜 蔡紅新 吳偉娜侯瑩 王震

(河南理工大學物理化學學院,焦作454000)

PMBP縮4-甲基水楊酰肼銅、鋅配合物:合成、結構及鋅配合物的熒光性質

李曉靜 蔡紅新*吳偉娜*侯瑩 王震

(河南理工大學物理化學學院,焦作454000)

合成并通過單晶衍射、元素分析、紅外光譜表征了配合物[(Cu)(L)(Cl)]·0.5EtOH·1.5H2O(1)和{[Zn(L)(NO3)]·2CH3CN}n(2)的結構(HL為PMBP縮4-甲基水楊酰肼;PMBP=1-phenyl-3-methyl-4-benzoyl-5-pyrazolone)。單晶衍射結果表明,配合物1中,Cu(Ⅱ)離子與來自烯醇化脫質子配體L-的2個O原子和1個N原子,及1個氯離子配位,采取扭曲的平面正方形配位構型。而配合物2中,Zn(Ⅱ)離子采取扭曲的三角雙錐配位構型,與來自L-的NO2電子供體,1個單齒配位的硝酸根和相鄰配體吡唑啉酮N原子配位,形成沿b軸方向的一維鏈狀結構。在310 nm紫外光激發下,配合物2在434和459 nm處有很強的熒光發射,而配體的熒光發射峰在521 nm,強度明顯弱于配合物。此外,固態配體和配合物2的熒光壽命分別為7.352 8和7.755 6 μs。

酰腙;Zn(Ⅱ)配合物;Cu(Ⅱ)配合物;熒光;晶體結構

It is well known that Schiff bases are an important class of ligands in coordination chemistry and have been found extensive application in different fields[1-5]. Among them,the Schiff base derivatives of 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone(PMBP)and their metal complexes have been widely investigated due to their high biological and pharmaceutical activities,such as antibacterial,antitumor,antivirus enzyme-inhibitor[6-8]. Although some PMBP Schiff bases have been reported toshowexcellentphotochromicandfluorescence properties[9-10],studies on the fluorescence properties of the metal complexes with such series of ligands are relatively few.

Generally,zincioniscloselyrelatedto biochemistry,clinicaldiagnosticsaswellas environmental pollution[11-15].Furthermore,a large amount of Zn(Ⅱ)acylhydrazones have been reported for their fluorescence properties[11,14-15].Therefore,in this paper,Cu(Ⅱ)and Zn(Ⅱ)complexeswithan acylhydrazone ligand derived from PMBP and 4-methyl salicylic hydrazidehavebeensynthesizedandstructural determined by single-crystalX-raydiffraction.In addition,the fluorescence properties of the ligand and its Zn(Ⅱ)complex were discussed in detail.

Scheme 1Reaction scheme for the synthesis of HL

1Experimental

1.1 Materials and measurements

Solvents and starting materials for synthesis were purchasedcommerciallyandusedasreceived. Elemental analysis was carried out on an Elemental Vario EL analyzer.The IR spectra(ν=4 000~400 cm-1) were determined by the KBr pressed disc method on a Bruker V70 FTIR spectrophotometer.1H NMR spectra ofHLwasacquiredwithBrukerAV400NMR instrument in DMSO-d6solution with TMS as internal standard.Fluorescence spectra were determined on an Edinburgh FLS980 spectrophotometer.

1.2 Preparations of the ligand and complexes

As shown in Scheme 1,the ligand HL was prepared by condensation of PMBP(2.78 g,10 mmol) and 4-methyl salicylic hydrazide(1.66 g,10 mmol)in ethanol solution(30 mL)under reflux condition for 5 h.The yellow solid was filtered and washed three times with ethanol.Crystals of HL·0.5EtOH suitable forX-raydiffractionanalysiswereobtainedby recrystallization of HL from ethanol solution.Yield: 3.02g(71%).m.p.138~142℃.Elemental analysis Calcd.for HL(C25H22N4O3)(%):C:70.41;H:5.20;N: 13.14;Found:C:70.34;H:5.21;N:13.24.FTIR (cm-1):ν(O-H)3 404,ν(O=C pyrazolone)1 634,ν(O= C acylhydrazone)1 596,ν(C=C)1 580,ν(C=N pyrazolone)1 536.1H NMR(400 MHz,DMSO-d6)δ: 6.798~6.833(2H),7.278~7.750(10H),8.022~8.046 (1H)for Ar-H,2.302(3H,s,CH3of benzene ring), 1.276(3H,s,-CH3of pyrazolone ring).

The complex 1 and 2 were generated by reaction of HL(5mmol)with equal molar of CuCl2·2H2O in ethanol and Zn(NO3)2·6H2O(1:1 molar ratio)in acetonitrile solution,respectively.Crystals of 1 and 2 suitable for X-ray diffraction analysis were obtained byevaporatingthereactionsolutionsatroom temperature.

1:greenneedles.Anal.Calcd.for C26H27N4O5CuCl(%):C:54.36;H:4.74;N:9.75. Found(%):C:54.18;H:4.42;N:10.13.FTIR(cm-1): ν(O-H)3415,ν(O=C-N pyrazolone)1 613,ν(C=C) 1 571,ν(C=N pyrazolone)1 531,ν(C=N)1 486.

2:colorless blocks.Anal.Calcd.for C29H27N7O6Zn (%):C:54.86;H:4.29;N:15.44.Found(%):C: 54.81;H:4.18;N:15.52.FTIR(cm-1):ν(O-H)3 405,ν(O=C-N pyrazolone)1 618,ν(C=C)1 586,ν(C=N pyrazolone)1 548,ν(C=N)1 489.

1.3.1 X-ray crystallography

The X-ray diffraction measurement for HL· 0.5EtOH,complexes 1 and 2 was performed on a BrukerSMARTAPEXⅡCCDdiffractometer equipped with a graphite monochromatized Mo-Kα radiation(λ=0.071 073 nm)by using φ-ω scan mode. Semi-empirical absorption correction was applied to the intensity data using the SADABS program[16].The structures were solved by direct methods and refined by full matrix least-square on F2using the SHELXTL-97 program[17].All non-hydrogen atoms were refined anisotropically.AllHatomswerepositioned geometricallyandrefinedusingaridingmodel. SQUEEZE procedure was applied to deal with the crystal solvent molecules of complexes 1 and 2. Details of the crystal parameters,data collection and refinements for three compounds are summarized in Table1 .

CCDC:1058420,HL·0.5EtOH;1058421,1; 1058422,2.

Table1 Crystal data and structure refinement for the HL·0.5EtOH,1 and 2

2Results and discussion

2.1 Crystal structures description

Selected bond distances and angles of threecompounds are listed in Table2 .As shown in Fig.1 a, HL in the crystal structure of HL·0.5EtOH is in a ketone form,in which the bond lengths of carbonyl C7-O1(0.126 4(2)nm)and C18-O2(0.125 1(2)nm) are comparable to those of some reported Schiff base ligands derived from PMBP[9].

Oncecoordinatedwithmetalion,the acylhydrazone ligand HL is deprotonated.In addition, the distances of the enolized C-O and imine C-N bands in both complexes are intermediate between singleand doublebond,suggesting anextended conjugation in anionic ligand after complexation.The structural analysis reveals that the asymmetric unit of 1(Fig.1 b)is build of two similar neutral mononuclear complex units,a half crystal ethanol and a half crystal water.Each copper(Ⅱ)center with distorted square planar geometry is four-coordinated as[Cu(OON)Cl], with one nitrogen and two oxygen atoms provided by the enolizated ligand L-and one chloride anion.The coordination bond lengths around both Cu(Ⅱ)center are in the normal range,with Cu-O being 0.189 6(5)~0.197 5(5)nm,Cu-N being 0.196 6(6)and 0.197 7(7) nm,Cu-Cl being 0.221 5(3)and 0.222 7(3)nm,respectively.

Fig.1 ORTEP drawing of HL·0.5EtOH(a),1(b)and 2(c)with 10%thermal ellipsoids;(d)Chain-like structurealong b axis in complex 2

However,the zinc(Ⅱ)center in 2(Fig.1 (c))is surrounded by one nitrate anion,one NO2donor set of an enolizated ligand L-and one pyrazoline nitrogen atom from another adjacent acylhydrazone ligand,thus forming one dimension chain-like framework along b axis(Fig.1 (d)).According to the Addison rule[18],the geometric index τ is 0.526 2,indicating that the coordination geometry of Zn(Ⅱ)ion is best described as a distorted trigonal biyramid rather than tetragonal pyramid.The equatorial plane of the trigonal biyramid is made up of N2i,N3 and O4 atoms(Symmetry code:i0.5-x,-0.5+y,0.5-z),while O1 and O2 atoms occupy the axial positions in trans manner.

2.2 IR spectra

The IR spectra for both complexes are more or less similar due to the similarity in coordination modes of the ligands with the metal centre.ν(O=C pyrazolone)vibrations of the free ligand is at 1 634 cm-1,it shifts to 1 613 and 1 618 cm-1in complexes 1 and 2,respectively,showing the pyrazolone O=C bond participates in the coordination in each complex.The O=C-N characteristic stretching vibration absorption of the acylhydrazone group in the free ligand is at 1 597 cm-1,while it is absent in both complexes.Meanwhile, new(N=C-O)stretching vibration absorption are observed at 1 486 and 1 489 cm-1in complexes 1 and2,respectively,whichrevealingthatinboth complexes the acylhydrazone C=O in O=C-N moiety has enolizated and the oxygen atom coordinates to the central metal ion[8].The peak at 1 536 cm-1should be assigned to the ν(C=N pyrazolone)vibration,it appears at 1 531 and 1 548 cm-1in complexes 1 and 2,respectively,clearly indicating that the nitrogen atom of pyrazolone ring takes part in the coordination with Zn(Ⅱ)ion in complex 2,while does not in complex 1.Itis in accordance withtheX-ray diffraction analysis result.

Table2 Selected bond lengths(nm)and angles(°)in HL·0.5EtOH,1 and 2

Table3 Luminescent decay data of HL and complex 2 in the solid state

Fig.2 Fluorescence excitation spectra of complex 2(a) and free ligand HL(b);emission spectra of complex 2(c)and free ligand HL(d)in the solid state at room temperature

2.3 Fluorescence spectra

In the solid state,the fluorescence intensity of 1 is much too weak,thus is not discussed in this work. Fig.2 shows the excitation and emission spectra of the acylhydrazone ligand and 2 in solid state.When excited at 310 nm,complex 2 exhibits two strong emissions at 434 and 459 nm,while the ligand showsrelatively weak emission at 521 nm.This is probably due to the energy transferring from the ligand to the Zn(Ⅱ)ion[19].The behavior of Zn2+coordinated to the ligand is regarded as that of emissive species resulted in a CHEF effect(chelation enhancement of the fluorescence emission)[20].Luminescent decay data of HL and complex 2 in solid state are shown in Table3 , where τ1and τ2are short-and long-decay components, separately.The lifetime values(μs)are determined to be 0.661 2 and 8.118 5 for HL,while 0.738 6 and 8.787 1 for the complex 2.The mean lifetimes〈τ〉are 7.352 8 μs for HL and 7.7556 μs for the complex 2 calculated by the following equation[21]:,where B1and B2are weight factors.

[1]HUANG Chao(黃超),WU Juan(吳娟),CHEN Dong-Mei (陳冬梅),et al.Chinese J.Inorg.Chem.(無機化學學報), 2015,31:109-113

[2]CHEN Yan-Min(陳延民),XIE Qin-Fan(解慶范),LIU Jin-Hua(劉金花),et al.Chinese J.Inorg.Chem.(無機化學學報),2015,31:74-80

[3]CHEN Yan-Min(陳延民),CHU Zhao-Hua(儲召華),HAO Gui-Xia(郝桂霞),et al.Chinese J.Inorg.Chem.(無機化學學報),2015,31:317-322

[4]ZHUO Xin(卓馨),PAN Zhao-Rui(潘兆瑞),WANG Zuo-Wei (王作為),et al.Chinese J.Inorg.Chem.(無機化學學報), 2006,22:1847-1851

[5]LI Shi-Xiong(李石雄),LIAO Bei-Ling(廖蓓玲),LUO Pei (羅培),et al.Chinese J.Inorg.Chem.(無機化學學報), 2015,31:291-296

[6]Yang Z Y,Yang R D,Li F S,et al.Polyhedron,2000,19: 2599-2604

[7]Yang Z Y,Wang B D,Li Y H.J.Organomet.Chem.,2006, 691:4159-4166

[8]Wang Y,Yang Z Y.Transition Met.Chem.,2005,30:902 -906

[9]Wang Y,Yang Z Y.J.Lumin.,2008,128:373-376

[10]ZHANG Shu-Ming(張姝明),LI Pei-Fan(李培凡),YU Ming (郁銘),et al.Chinese J.Inorg.Chem.(無機化學學報), 2004,20:439-443

[11]Zhou X Y,Li P X,Shi Z H,et al.Inorg.Chem.,2012,51: 9226-9231

[12]Wu Z K,Chen Q Q,Yang G Q,et al.Sens.Actuators B., 2004,99:511-515

[13]Zhang G Q,Yang G Q,Zhu L N,et al.Sens.Actuators B., 2006,114:995-1000

[14]Sali S,Grabchev I,Chovelon J M,et al.Spectrochim.Acta A,2006,65:591-597

[15]Kulatilleke C P,Silva S A,Eliav Y.Polyhedron,2006,25: 2593-2596

[16]Sheldrick G M.SADABS,University of G?ttingen,Germany, 1996.

[17]Sheldrick G M.SHELX-97,Program for the Solution and the Refinement of Crystal Structures,University of G?ttingen, Germany,1997.

[18]Addison A W,Rao T N.J.Chem.Soc.Dalton Trans., 1984,1349-1356

[19]CHENG Mei-Ling(程美令),CAO Xiang-Qian(曹向前), WANG Chun-Lan(王春蘭),et al.Chinese J.Inorg.Chem. (無機化學學報),2006,22:1222-1226

[20]Vicente M,Bastida R,Lodeiro C,et al.Inorg.Chem., 2003,42:6768-6779

[21]Buddhudu S,Morita M,Murakami S,et al.J.Lumin., 1999,83-84:199-203

Cu(Ⅱ)and Zn(Ⅱ)Complexes with an Acylhydrazone Derived from 4-Methyl Salicylic Hydrazide and PMBP:Crystal Structures and Fluorescence Property of Zn(Ⅱ)Complex

LI Xiao-JingCAI Hong-Xin*WU Wei-Na*HOU YingWANG Zhen
(Department of Physics and Chemistry,Henan Polytechnic University,Jiaozuo,Henan 454000,China)

Two complexes[(Cu)(L)(Cl)]·0.5EtOH·1.5H2O and{[Zn(L)(NO3)]·2CH3CN}n(HL is the acylhydrazone ligand derived from 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone(PMBP)and 4-methyl salicylic hydrazide)have been synthesized and characterized by single-crystal X-ray diffraction,elemental analysis and IR spectroscopy.X-ray diffraction analysis results show that the coordination geometry of the Cu(Ⅱ)ion in 1 is a distorted square planar geometry with nitrogen and two oxygen atoms provided by the enolizated ligand L-1and one chloride anion.However, in complex 2,the Zn(Ⅱ)ion with a distorted trigonal biyramid coordination geometry is five-coordinated,involving one nitrate anion,one NO2donor set of an enolizated ligand L-and one pyrazoline nitrogen atom from another adjacent acylhydrazone ligand,thus forming one dimension chain-like framework along b axis.When excited at 310 nm,complex 2 exhibits two strong emissions at 434 and 459 nm,while the ligand shows relatively weak emission at 521 nm.In addition,luminescent decay data show that the mean lifetime〈τ〉are 7.352 8 and 7.755 6 μs for HL and complex 2,respectively.CCDC:1058420,HL·0.5EtOH;1058421,1;1058422,2.

hydrazone;Zn(Ⅱ)complex;Cu(Ⅱ)complex;fluorescence;crystal structure

O614.121;O614.24+1

A

1001-4861(2015)08-1661-06

10.11862/CJIC.2015.228

2015-04-10。收修改稿日期:2015-06-02。

國家自然科學基金(No.21001040,21404033,21401046),河南省教育廳自然科學基金(No.12B150011,14B150029)資助。

*通訊聯系人。E-mail:me2001@hpu.edu.cn;wuwn08@hpu.edu.;會員登記號:S06N6704M112。

主站蜘蛛池模板: 久久a毛片| 中文字幕 91| 国产精品99久久久| 国产在线精彩视频二区| 狂欢视频在线观看不卡| 亚洲欧美日韩中文字幕在线| 亚洲AV电影不卡在线观看| 91免费在线看| 国产精品原创不卡在线| 国产欧美日韩另类精彩视频| 国产乱人视频免费观看| 欧美成人精品在线| 欧美成人午夜视频免看| 国产精品偷伦视频免费观看国产 | 亚洲av色吊丝无码| 免费午夜无码18禁无码影院| 久久精品无码一区二区日韩免费| 国产一区二区精品福利| 国产尤物视频在线| 二级特黄绝大片免费视频大片| 高清久久精品亚洲日韩Av| 免费无码AV片在线观看国产| 国产精品人人做人人爽人人添| 制服无码网站| 午夜啪啪福利| 日韩精品成人网页视频在线| 午夜啪啪福利| 精品一区国产精品| 国产精品污视频| 亚洲精品国产精品乱码不卞| 福利一区三区| 国产丝袜91| lhav亚洲精品| 久久香蕉国产线看精品| 欧美成人精品一级在线观看| 国产一级裸网站| 久久国产拍爱| 国产素人在线| 婷婷六月色| 国产美女丝袜高潮| 久久精品人人做人人爽电影蜜月 | 国产亚洲精品va在线| 久久国产精品无码hdav| 色一情一乱一伦一区二区三区小说| 欧美有码在线观看| 国产自产视频一区二区三区| 欧美第九页| 五月天综合婷婷| 97国产在线观看| 无码中文字幕乱码免费2| 亚洲天堂网2014| 国产精品第| 国产午夜小视频| 亚洲第一区欧美国产综合 | 国产交换配偶在线视频| 国产伦片中文免费观看| 欧美日韩久久综合| 国产精品.com| 四虎永久在线| 国产理论最新国产精品视频| 狠狠操夜夜爽| 999在线免费视频| 最新国产麻豆aⅴ精品无| 亚洲一区二区约美女探花| 国产精品久久久久久久伊一| 国产成人精品免费av| 亚洲无码37.| 国产精品无码一区二区桃花视频| 亚洲成人手机在线| 成人国产免费| 综合色区亚洲熟妇在线| 精品91在线| 91久久国产综合精品女同我| 伊人天堂网| 91外围女在线观看| 无码粉嫩虎白一线天在线观看| 亚洲欧美成人综合| 91麻豆精品国产91久久久久| 视频二区国产精品职场同事| 91美女视频在线观看| 亚国产欧美在线人成| 久久不卡国产精品无码|