999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

PMBP縮4-甲基水楊酰肼銅、鋅配合物:合成、結構及鋅配合物的熒光性質

2015-12-05 10:25:22李曉靜蔡紅新吳偉娜侯瑩王震
無機化學學報 2015年8期

李曉靜 蔡紅新 吳偉娜侯瑩 王震

(河南理工大學物理化學學院,焦作454000)

PMBP縮4-甲基水楊酰肼銅、鋅配合物:合成、結構及鋅配合物的熒光性質

李曉靜 蔡紅新*吳偉娜*侯瑩 王震

(河南理工大學物理化學學院,焦作454000)

合成并通過單晶衍射、元素分析、紅外光譜表征了配合物[(Cu)(L)(Cl)]·0.5EtOH·1.5H2O(1)和{[Zn(L)(NO3)]·2CH3CN}n(2)的結構(HL為PMBP縮4-甲基水楊酰肼;PMBP=1-phenyl-3-methyl-4-benzoyl-5-pyrazolone)。單晶衍射結果表明,配合物1中,Cu(Ⅱ)離子與來自烯醇化脫質子配體L-的2個O原子和1個N原子,及1個氯離子配位,采取扭曲的平面正方形配位構型。而配合物2中,Zn(Ⅱ)離子采取扭曲的三角雙錐配位構型,與來自L-的NO2電子供體,1個單齒配位的硝酸根和相鄰配體吡唑啉酮N原子配位,形成沿b軸方向的一維鏈狀結構。在310 nm紫外光激發下,配合物2在434和459 nm處有很強的熒光發射,而配體的熒光發射峰在521 nm,強度明顯弱于配合物。此外,固態配體和配合物2的熒光壽命分別為7.352 8和7.755 6 μs。

酰腙;Zn(Ⅱ)配合物;Cu(Ⅱ)配合物;熒光;晶體結構

It is well known that Schiff bases are an important class of ligands in coordination chemistry and have been found extensive application in different fields[1-5]. Among them,the Schiff base derivatives of 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone(PMBP)and their metal complexes have been widely investigated due to their high biological and pharmaceutical activities,such as antibacterial,antitumor,antivirus enzyme-inhibitor[6-8]. Although some PMBP Schiff bases have been reported toshowexcellentphotochromicandfluorescence properties[9-10],studies on the fluorescence properties of the metal complexes with such series of ligands are relatively few.

Generally,zincioniscloselyrelatedto biochemistry,clinicaldiagnosticsaswellas environmental pollution[11-15].Furthermore,a large amount of Zn(Ⅱ)acylhydrazones have been reported for their fluorescence properties[11,14-15].Therefore,in this paper,Cu(Ⅱ)and Zn(Ⅱ)complexeswithan acylhydrazone ligand derived from PMBP and 4-methyl salicylic hydrazidehavebeensynthesizedandstructural determined by single-crystalX-raydiffraction.In addition,the fluorescence properties of the ligand and its Zn(Ⅱ)complex were discussed in detail.

Scheme 1Reaction scheme for the synthesis of HL

1Experimental

1.1 Materials and measurements

Solvents and starting materials for synthesis were purchasedcommerciallyandusedasreceived. Elemental analysis was carried out on an Elemental Vario EL analyzer.The IR spectra(ν=4 000~400 cm-1) were determined by the KBr pressed disc method on a Bruker V70 FTIR spectrophotometer.1H NMR spectra ofHLwasacquiredwithBrukerAV400NMR instrument in DMSO-d6solution with TMS as internal standard.Fluorescence spectra were determined on an Edinburgh FLS980 spectrophotometer.

1.2 Preparations of the ligand and complexes

As shown in Scheme 1,the ligand HL was prepared by condensation of PMBP(2.78 g,10 mmol) and 4-methyl salicylic hydrazide(1.66 g,10 mmol)in ethanol solution(30 mL)under reflux condition for 5 h.The yellow solid was filtered and washed three times with ethanol.Crystals of HL·0.5EtOH suitable forX-raydiffractionanalysiswereobtainedby recrystallization of HL from ethanol solution.Yield: 3.02g(71%).m.p.138~142℃.Elemental analysis Calcd.for HL(C25H22N4O3)(%):C:70.41;H:5.20;N: 13.14;Found:C:70.34;H:5.21;N:13.24.FTIR (cm-1):ν(O-H)3 404,ν(O=C pyrazolone)1 634,ν(O= C acylhydrazone)1 596,ν(C=C)1 580,ν(C=N pyrazolone)1 536.1H NMR(400 MHz,DMSO-d6)δ: 6.798~6.833(2H),7.278~7.750(10H),8.022~8.046 (1H)for Ar-H,2.302(3H,s,CH3of benzene ring), 1.276(3H,s,-CH3of pyrazolone ring).

The complex 1 and 2 were generated by reaction of HL(5mmol)with equal molar of CuCl2·2H2O in ethanol and Zn(NO3)2·6H2O(1:1 molar ratio)in acetonitrile solution,respectively.Crystals of 1 and 2 suitable for X-ray diffraction analysis were obtained byevaporatingthereactionsolutionsatroom temperature.

1:greenneedles.Anal.Calcd.for C26H27N4O5CuCl(%):C:54.36;H:4.74;N:9.75. Found(%):C:54.18;H:4.42;N:10.13.FTIR(cm-1): ν(O-H)3415,ν(O=C-N pyrazolone)1 613,ν(C=C) 1 571,ν(C=N pyrazolone)1 531,ν(C=N)1 486.

2:colorless blocks.Anal.Calcd.for C29H27N7O6Zn (%):C:54.86;H:4.29;N:15.44.Found(%):C: 54.81;H:4.18;N:15.52.FTIR(cm-1):ν(O-H)3 405,ν(O=C-N pyrazolone)1 618,ν(C=C)1 586,ν(C=N pyrazolone)1 548,ν(C=N)1 489.

1.3.1 X-ray crystallography

The X-ray diffraction measurement for HL· 0.5EtOH,complexes 1 and 2 was performed on a BrukerSMARTAPEXⅡCCDdiffractometer equipped with a graphite monochromatized Mo-Kα radiation(λ=0.071 073 nm)by using φ-ω scan mode. Semi-empirical absorption correction was applied to the intensity data using the SADABS program[16].The structures were solved by direct methods and refined by full matrix least-square on F2using the SHELXTL-97 program[17].All non-hydrogen atoms were refined anisotropically.AllHatomswerepositioned geometricallyandrefinedusingaridingmodel. SQUEEZE procedure was applied to deal with the crystal solvent molecules of complexes 1 and 2. Details of the crystal parameters,data collection and refinements for three compounds are summarized in Table1 .

CCDC:1058420,HL·0.5EtOH;1058421,1; 1058422,2.

Table1 Crystal data and structure refinement for the HL·0.5EtOH,1 and 2

2Results and discussion

2.1 Crystal structures description

Selected bond distances and angles of threecompounds are listed in Table2 .As shown in Fig.1 a, HL in the crystal structure of HL·0.5EtOH is in a ketone form,in which the bond lengths of carbonyl C7-O1(0.126 4(2)nm)and C18-O2(0.125 1(2)nm) are comparable to those of some reported Schiff base ligands derived from PMBP[9].

Oncecoordinatedwithmetalion,the acylhydrazone ligand HL is deprotonated.In addition, the distances of the enolized C-O and imine C-N bands in both complexes are intermediate between singleand doublebond,suggesting anextended conjugation in anionic ligand after complexation.The structural analysis reveals that the asymmetric unit of 1(Fig.1 b)is build of two similar neutral mononuclear complex units,a half crystal ethanol and a half crystal water.Each copper(Ⅱ)center with distorted square planar geometry is four-coordinated as[Cu(OON)Cl], with one nitrogen and two oxygen atoms provided by the enolizated ligand L-and one chloride anion.The coordination bond lengths around both Cu(Ⅱ)center are in the normal range,with Cu-O being 0.189 6(5)~0.197 5(5)nm,Cu-N being 0.196 6(6)and 0.197 7(7) nm,Cu-Cl being 0.221 5(3)and 0.222 7(3)nm,respectively.

Fig.1 ORTEP drawing of HL·0.5EtOH(a),1(b)and 2(c)with 10%thermal ellipsoids;(d)Chain-like structurealong b axis in complex 2

However,the zinc(Ⅱ)center in 2(Fig.1 (c))is surrounded by one nitrate anion,one NO2donor set of an enolizated ligand L-and one pyrazoline nitrogen atom from another adjacent acylhydrazone ligand,thus forming one dimension chain-like framework along b axis(Fig.1 (d)).According to the Addison rule[18],the geometric index τ is 0.526 2,indicating that the coordination geometry of Zn(Ⅱ)ion is best described as a distorted trigonal biyramid rather than tetragonal pyramid.The equatorial plane of the trigonal biyramid is made up of N2i,N3 and O4 atoms(Symmetry code:i0.5-x,-0.5+y,0.5-z),while O1 and O2 atoms occupy the axial positions in trans manner.

2.2 IR spectra

The IR spectra for both complexes are more or less similar due to the similarity in coordination modes of the ligands with the metal centre.ν(O=C pyrazolone)vibrations of the free ligand is at 1 634 cm-1,it shifts to 1 613 and 1 618 cm-1in complexes 1 and 2,respectively,showing the pyrazolone O=C bond participates in the coordination in each complex.The O=C-N characteristic stretching vibration absorption of the acylhydrazone group in the free ligand is at 1 597 cm-1,while it is absent in both complexes.Meanwhile, new(N=C-O)stretching vibration absorption are observed at 1 486 and 1 489 cm-1in complexes 1 and2,respectively,whichrevealingthatinboth complexes the acylhydrazone C=O in O=C-N moiety has enolizated and the oxygen atom coordinates to the central metal ion[8].The peak at 1 536 cm-1should be assigned to the ν(C=N pyrazolone)vibration,it appears at 1 531 and 1 548 cm-1in complexes 1 and 2,respectively,clearly indicating that the nitrogen atom of pyrazolone ring takes part in the coordination with Zn(Ⅱ)ion in complex 2,while does not in complex 1.Itis in accordance withtheX-ray diffraction analysis result.

Table2 Selected bond lengths(nm)and angles(°)in HL·0.5EtOH,1 and 2

Table3 Luminescent decay data of HL and complex 2 in the solid state

Fig.2 Fluorescence excitation spectra of complex 2(a) and free ligand HL(b);emission spectra of complex 2(c)and free ligand HL(d)in the solid state at room temperature

2.3 Fluorescence spectra

In the solid state,the fluorescence intensity of 1 is much too weak,thus is not discussed in this work. Fig.2 shows the excitation and emission spectra of the acylhydrazone ligand and 2 in solid state.When excited at 310 nm,complex 2 exhibits two strong emissions at 434 and 459 nm,while the ligand showsrelatively weak emission at 521 nm.This is probably due to the energy transferring from the ligand to the Zn(Ⅱ)ion[19].The behavior of Zn2+coordinated to the ligand is regarded as that of emissive species resulted in a CHEF effect(chelation enhancement of the fluorescence emission)[20].Luminescent decay data of HL and complex 2 in solid state are shown in Table3 , where τ1and τ2are short-and long-decay components, separately.The lifetime values(μs)are determined to be 0.661 2 and 8.118 5 for HL,while 0.738 6 and 8.787 1 for the complex 2.The mean lifetimes〈τ〉are 7.352 8 μs for HL and 7.7556 μs for the complex 2 calculated by the following equation[21]:,where B1and B2are weight factors.

[1]HUANG Chao(黃超),WU Juan(吳娟),CHEN Dong-Mei (陳冬梅),et al.Chinese J.Inorg.Chem.(無機化學學報), 2015,31:109-113

[2]CHEN Yan-Min(陳延民),XIE Qin-Fan(解慶范),LIU Jin-Hua(劉金花),et al.Chinese J.Inorg.Chem.(無機化學學報),2015,31:74-80

[3]CHEN Yan-Min(陳延民),CHU Zhao-Hua(儲召華),HAO Gui-Xia(郝桂霞),et al.Chinese J.Inorg.Chem.(無機化學學報),2015,31:317-322

[4]ZHUO Xin(卓馨),PAN Zhao-Rui(潘兆瑞),WANG Zuo-Wei (王作為),et al.Chinese J.Inorg.Chem.(無機化學學報), 2006,22:1847-1851

[5]LI Shi-Xiong(李石雄),LIAO Bei-Ling(廖蓓玲),LUO Pei (羅培),et al.Chinese J.Inorg.Chem.(無機化學學報), 2015,31:291-296

[6]Yang Z Y,Yang R D,Li F S,et al.Polyhedron,2000,19: 2599-2604

[7]Yang Z Y,Wang B D,Li Y H.J.Organomet.Chem.,2006, 691:4159-4166

[8]Wang Y,Yang Z Y.Transition Met.Chem.,2005,30:902 -906

[9]Wang Y,Yang Z Y.J.Lumin.,2008,128:373-376

[10]ZHANG Shu-Ming(張姝明),LI Pei-Fan(李培凡),YU Ming (郁銘),et al.Chinese J.Inorg.Chem.(無機化學學報), 2004,20:439-443

[11]Zhou X Y,Li P X,Shi Z H,et al.Inorg.Chem.,2012,51: 9226-9231

[12]Wu Z K,Chen Q Q,Yang G Q,et al.Sens.Actuators B., 2004,99:511-515

[13]Zhang G Q,Yang G Q,Zhu L N,et al.Sens.Actuators B., 2006,114:995-1000

[14]Sali S,Grabchev I,Chovelon J M,et al.Spectrochim.Acta A,2006,65:591-597

[15]Kulatilleke C P,Silva S A,Eliav Y.Polyhedron,2006,25: 2593-2596

[16]Sheldrick G M.SADABS,University of G?ttingen,Germany, 1996.

[17]Sheldrick G M.SHELX-97,Program for the Solution and the Refinement of Crystal Structures,University of G?ttingen, Germany,1997.

[18]Addison A W,Rao T N.J.Chem.Soc.Dalton Trans., 1984,1349-1356

[19]CHENG Mei-Ling(程美令),CAO Xiang-Qian(曹向前), WANG Chun-Lan(王春蘭),et al.Chinese J.Inorg.Chem. (無機化學學報),2006,22:1222-1226

[20]Vicente M,Bastida R,Lodeiro C,et al.Inorg.Chem., 2003,42:6768-6779

[21]Buddhudu S,Morita M,Murakami S,et al.J.Lumin., 1999,83-84:199-203

Cu(Ⅱ)and Zn(Ⅱ)Complexes with an Acylhydrazone Derived from 4-Methyl Salicylic Hydrazide and PMBP:Crystal Structures and Fluorescence Property of Zn(Ⅱ)Complex

LI Xiao-JingCAI Hong-Xin*WU Wei-Na*HOU YingWANG Zhen
(Department of Physics and Chemistry,Henan Polytechnic University,Jiaozuo,Henan 454000,China)

Two complexes[(Cu)(L)(Cl)]·0.5EtOH·1.5H2O and{[Zn(L)(NO3)]·2CH3CN}n(HL is the acylhydrazone ligand derived from 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone(PMBP)and 4-methyl salicylic hydrazide)have been synthesized and characterized by single-crystal X-ray diffraction,elemental analysis and IR spectroscopy.X-ray diffraction analysis results show that the coordination geometry of the Cu(Ⅱ)ion in 1 is a distorted square planar geometry with nitrogen and two oxygen atoms provided by the enolizated ligand L-1and one chloride anion.However, in complex 2,the Zn(Ⅱ)ion with a distorted trigonal biyramid coordination geometry is five-coordinated,involving one nitrate anion,one NO2donor set of an enolizated ligand L-and one pyrazoline nitrogen atom from another adjacent acylhydrazone ligand,thus forming one dimension chain-like framework along b axis.When excited at 310 nm,complex 2 exhibits two strong emissions at 434 and 459 nm,while the ligand shows relatively weak emission at 521 nm.In addition,luminescent decay data show that the mean lifetime〈τ〉are 7.352 8 and 7.755 6 μs for HL and complex 2,respectively.CCDC:1058420,HL·0.5EtOH;1058421,1;1058422,2.

hydrazone;Zn(Ⅱ)complex;Cu(Ⅱ)complex;fluorescence;crystal structure

O614.121;O614.24+1

A

1001-4861(2015)08-1661-06

10.11862/CJIC.2015.228

2015-04-10。收修改稿日期:2015-06-02。

國家自然科學基金(No.21001040,21404033,21401046),河南省教育廳自然科學基金(No.12B150011,14B150029)資助。

*通訊聯系人。E-mail:me2001@hpu.edu.cn;wuwn08@hpu.edu.;會員登記號:S06N6704M112。

主站蜘蛛池模板: 精品一区二区三区水蜜桃| 日本日韩欧美| 五月丁香伊人啪啪手机免费观看| 欧美日韩亚洲综合在线观看 | 久久国产亚洲欧美日韩精品| 国产精品护士| 青青草原国产免费av观看| 美女毛片在线| 久热这里只有精品6| 全午夜免费一级毛片| 亚洲高清在线天堂精品| 国产精品xxx| 专干老肥熟女视频网站| 亚洲综合一区国产精品| 亚卅精品无码久久毛片乌克兰| 亚洲欧美在线综合一区二区三区| 国内毛片视频| 成人免费午间影院在线观看| 在线无码av一区二区三区| 综合社区亚洲熟妇p| 国产精品内射视频| 亚洲精品无码AV电影在线播放| 欧美伊人色综合久久天天| 亚洲欧美精品一中文字幕| 国产区91| 久久夜色精品| 天堂在线亚洲| 亚洲一区无码在线| 亚洲A∨无码精品午夜在线观看| 亚洲国产欧洲精品路线久久| 色国产视频| 亚洲无限乱码一二三四区| 国产一级妓女av网站| 91无码人妻精品一区二区蜜桃| 亚洲av中文无码乱人伦在线r| 又污又黄又无遮挡网站| 亚洲爱婷婷色69堂| 在线精品欧美日韩| 麻豆AV网站免费进入| 最新亚洲人成无码网站欣赏网 | 三级国产在线观看| 欧美区一区二区三| 亚洲美女一级毛片| 欧洲欧美人成免费全部视频| 国产成人亚洲无码淙合青草| 中文字幕 日韩 欧美| 香蕉在线视频网站| 久久伊人久久亚洲综合| 国产成人亚洲精品色欲AV | 欧美中文字幕在线二区| 少妇精品在线| 免费高清毛片| 欧美成一级| 亚洲视频色图| 久久精品这里只有国产中文精品| 自慰高潮喷白浆在线观看| 蜜桃视频一区| 日韩精品亚洲一区中文字幕| 午夜视频免费一区二区在线看| 男人天堂伊人网| 成人年鲁鲁在线观看视频| 男人天堂伊人网| 欧美日韩久久综合| 亚洲国产天堂久久九九九| 亚洲伊人电影| 就去吻亚洲精品国产欧美| 亚洲色图在线观看| 99久久精品无码专区免费| 免费人欧美成又黄又爽的视频| 色噜噜久久| 五月婷婷亚洲综合| 国产又色又刺激高潮免费看| 91视频首页| 欧美中文字幕无线码视频| 国产精品亚洲αv天堂无码| 精品少妇人妻一区二区| 欧美福利在线观看| 国产成人一区| 国产精品综合久久久| 国产综合网站| 亚洲成在人线av品善网好看| 免费观看男人免费桶女人视频|