沈振西,孫維,李少偉,何永濤,付剛,張憲洲,王江偉
中國科學院地理科學與資源研究所 生態系統網絡觀測與模擬重點實驗室 拉薩高原生態系統研究站,北京100101
藏北高原不同海拔高度高寒草甸植被指數與環境溫濕度的關系
沈振西,孫維,李少偉,何永濤,付剛*,張憲洲,王江偉
中國科學院地理科學與資源研究所 生態系統網絡觀測與模擬重點實驗室 拉薩高原生態系統研究站,北京100101
藏北高寒草甸是全球高寒草地的重要組成部分,是對氣候變化最敏感的植被類型之一。關于高寒草地植被指數與環境溫濕度因子的關系還存在著諸多不確定性,這限制了準確預測高寒草地植被生長對將來氣候變化的響應。定量化高寒草地植被指數與氣候因子的關系利于預測將來氣候變化對高寒草地植被生長的影響。該研究基于相關分析和多重逐步回歸分析探討了藏北高原不同海拔高度(4300、4500和4700 m)的高寒草甸2011─2014年每年6─9月的歸一化植被指數(normalized difference vegetation index,NDVI)、增強型植被指數(Enhanced Vegetation Index,EVI)與土壤溫度、土壤濕度、空氣溫度、相對濕度、飽和水汽壓差的相互關系。相關分析表明,3種海拔的NDVI(4 300 m:r=0.79,P=0.000;4 500 m:r=0.80,P=0.000;4 700 m:r=0.52,P=0.005)和EVI(4 300 m:r=0.61,P=0.001;4 500 m:r=0.66,P=0.000;4 700 m:r=0.53,P = 0.004)都隨著土壤濕度的增加顯著增加;3種海拔的NDVI(4 300 m:r=-0.68,P=0.000;4 500 m:r=-0.56,P=0.002;4 700 m:r=-0.40,P=0.037)和EVI(4 300 m:r=-0.56,P=0.002;4 500 m:r=-0.49,P=0.008;4 700 m:r=-0.46,P=0.014)都隨著飽和水汽壓差的增加顯著降低;植被指數與環境溫濕度因子的相關系數隨著海拔的變化而變化;NDVI和EVI與環境溫濕度因子的相關系數存在差異。多重逐步回歸分析表明,土壤濕度一個因子解釋了 3種海拔的歸一化植被指數、海拔 4 300和4 500 m的增強型植被指數的變異,而海拔4 700 m的土壤濕度和土壤溫度共同了解釋了增強型植被指數的變異,其中土壤濕度的貢獻較大。因此,在藏北高寒草甸,植被指數對氣候變化的敏感性可能隨著海拔的變化而變化,NDVI和EVI對氣候變化的敏感性可能不同,土壤濕度主導著NDVI和EVI的季節變化。
高寒草甸;歸一化植被指數;增強型植被指數;藏北高原;氣候變化
青藏高原以其高海拔、低溫、強輻射等地理特性而享有“世界第三級”的稱謂(Zhang et al.,2000)。青藏高原是全球氣候變化最為敏感的區域之一,發生在其之上的氣候變暖幅度遠遠大于全球平均水平。強烈的氣候變化已經對青藏高原上的各種高寒生態系統產生了非常重大的影響,這些影響反過來又加劇了氣候變化(Fu et al.,2015;Zhang et al.,2015)。盡管如此,這些相關影響仍存在著諸多不確定性(Shen et al.,2015;Wang et al.,2012)。作為氣候變化的“啟動區”,發生在青藏高原上面的各種變化會迅速傳播至周邊地區(Yao et al.,1991)。
青藏高原上的植被類型主要有高寒草甸、高寒草原、溫帶草原、森林、灌木和農田等,而各種草地類型是其最重要的植被類型之一(Shen et al.,2014)6766。高寒草甸在青藏高原及其附近區域乃至世界高寒地區都具有典型代表意義(Xu et al.,2007)。約占1/3青藏高原面積的高寒草甸是青藏高原重要的牧場(Cao et al.,2003),在很大程度上影
響著當地畜牧業的發展。
在眾多的植被指數中,歸一化植被指數(Normalized Difference Vegetation Index,NDVI)是應用最廣泛的植被指數(Xiao et al.,2003)385。雖然NDVI已經被廣泛應用于生物量的估算和物候的反演等方面,但是NDVI仍存在著飽和現象以及容易受土壤和大氣的干擾等缺陷(Xiao et al.,2003)385。為了減少土壤等因素的干擾,相關研究又發現了包括增強型植被指數(Enhanced Vegetation Index,EVI)和土壤調節植被指數在內的多種植被指數。相對于NDVI,EVI削弱了土壤和大氣的干擾作用(Xiao et al.,2004)。與土壤調節植被指數相比,EVI可通過藍色波段修正由大氣和土壤等因素所造成的偏差。自1999年12月中分辨率成像光譜 儀 ( moderate resolution imaging spectroradiometer,MODIS)的Terra傳感器成功發射以來,MODIS一直以較高的時間分辨率和空間分辨率對全球范圍內的NDVI和EVI進行著連續的動態監測,這便于分析NDVI和EVI的時空變異及其與全球變化的關系。
為了探討氣候變化對青藏高原植被生長的影響,很多研究已經分析了EVI尤其是NDVI與各種氣候因子的相互關系,但是并沒有一致的結論(Shen et al.,20146765;Sun et al.,20131894;Zhang et al.,20131)。此外,目前的研究主要分析了植被指數與氣溫和降水的相互關系,缺少對植被指數與土壤溫度、土壤濕度的相互關系方面的研究。為此,本研究基于MODIS的NDVI和EVI以及常規觀測的土壤溫濕度、空氣溫濕度數據,分析了藏北高寒草甸不同海拔高度的植被指數的時間變異及其與環境溫濕度的相互關系,這對于更好的預測將來氣候變化背景下的高寒生態系統對氣候變化的響應及其反饋機制有重要的意義。
1.1 研究地概況
本研究區域(30°30′~30°32′N,91°03′~91°04′E)位于拉薩市當雄縣草原站(Fu et al.,20142;付剛等,201131),該站距當雄縣城約3 km,地處念青唐古拉山的南緣。該地區屬于高原性季風氣候,降水量有明顯的季節之分,80%的降水集中在生長季節的6─8月份(Fu et al.,2012a)158。植被類型屬于高寒草甸植被(付剛等,2011)31。土壤類型為高寒草甸土,土層厚度約為0.5~0.7 m,植物根系主要分布在0~20 cm土層內(Fu et al.,2012b)。
1.2 樣地設置
在念青唐古拉山的一個南坡,以當雄草原站(海拔4300 m)為基點,沿著海拔每升高200 m布設樣地,共設置3個實驗樣地(圖1),每塊樣地大小約為20 m ×20 m。在每塊樣地內架設兩套微氣候觀測系統(HOBO Weather Station Data Logger)(付剛等,2011)32,分別位于距樣地中心南北兩側約5 m處。

圖1 研究站點Fig. 1 Study sites
1.3 環境溫濕度
本研究涉及到的環境溫濕度數據包括空氣溫度(Air Temperature,Ta,℃)、相對濕度(Relative Humidity,RH,%)、飽和水汽壓差(Vapor Pressure Deficit,VPD,kPa)、土壤溫度(Soil Temperature,Ts,℃)和土壤濕度(Soil Moisture,SM,m3·m-3)。其中空氣飽和水汽壓差是依據空氣溫度和相對濕度計算得到的(Fu et al.,2012a)159。
1.4 MODIS植被指數
本研究利用了 MODIS的植被指數產品MOD13Q1,本產品的時間分辨率為16 d,空間分辨率為250 m×250 m,在此空間分辨率下,3個實驗樣地對應的 3個象元間完全沒有重疊。2011─2014年每年生長季節(6─9月)的MODIS植被指數數據(NDVI 和 EVI)從網站http://daac.ornl.gov/cgi-bin/MODIS/GLBVIZ_1_Glb/ modis_subset_order_global_col5.pl上下載。下載的NDVI和EVI數據直接用于后續的統計分析。
1.5 統計分析
采用兩因子方差分析分析了海拔高度和觀測年份對Ts、Ta、SM、RH、VPD、NDVI和EVI的影響。采用相關分析和多重逐步回歸分析對植被指數與Ts、Ta、SM、RH、VPD的相互關系進行了統計分析。采用SPSS 16.0軟件進行相關的統計分析,采用Sigmaplot 10.0軟件作圖。
2.1 Ts、Ta、SM、RH和VPD的變化
方差分析表明(表1),觀測年份及其與海拔的交互作用對Ts、Ta、SM和VPD都無顯著影響,交互作用對RH也無顯著影響。觀測年份對RH的影響達到了顯著水平,即2014年的RH顯著大于其他3年的RH,而其他3年間的RH無顯著差異。海拔高度對Ts、Ta和SM有顯著影響,而對RH和VPD無顯著影響。具體而言,Ts和Ta都隨著海拔的升高而顯著降低,且不同海拔間的 Ts和 Ta都有顯著差異。海拔4700 m的SM顯著大于海拔4300 m的SM,而海拔4500 m的SM與其他兩個海拔的SM都無顯著差異。

表1 土壤溫度、土壤濕度、空氣溫度、相對濕度、飽和水汽壓差、歸一化植被指數和增強型植被指數的兩因子(海拔、年)方差分析Table 1 ANOVA for soil temperature (Ts), soil moisture (SM), air temperature (Ta), air relative humidity (RH), vapor pressure deficit (VPD), normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI)
3個海拔間的Ts、Ta、SM、RH和VPD都表現出了相似的季節變化(圖2,3)。
2.2 NDVI和EVI的變化
方差分析表明(表1),觀測年份、海拔高度與觀測年份的交互作用對NDVI和EVI都無顯著影響,而海拔高度對NDVI和EVI有顯著影響。即海拔4300和4500 m間的NDVI和EVI都無顯著差異,卻都顯著小于海拔4700 m的NDVI和EVI。
3種海拔間的NDVI和EVI都分別表現出了相似的季節變化,即隨著時間的推移,先增大后減少(圖4)。

表2 歸一化植被指數、增強型植被指數與土壤溫度、土壤濕度、空氣溫度、相對濕度以及飽和水汽壓差的相關分析Table 2 Correlation analysis between normalized difference vegetation index (NDVI) or enhanced vegetation index (EVI) and soil temperature (Ts), soil moisture (SM), air temperature (Ta), air relative humidity (RH) and vapor pressure deficit (VPD), respectively
2.3 NDVI、EVI與Ts、Ta、SM、RH、VPD的相互關系
相關分析表明(表2),3個海拔高度上NDVI和EVI與Ts、Ta和VPD均呈現顯著的負相關關系,而與SM和RH呈現顯著的正相關關系。海拔4300 m的NDVI隨著Ts和Ta的增加而顯著減少,海拔4300 m的EVI隨著Ts的增加也顯著減少,但與Ta
的負相關系數沒有達到統計顯著水平;海拔 4500和4700 m的NDVI和EVI與Ts和Ta的相關系數沒有達到統計顯著水平。3種海拔的NDVI和EVI都隨著SM的增加而顯著增加,而隨著VPD的增加而顯著減少; EVI都隨著RH的增加而顯著增加,其中,海拔4300和4500 m的NDVI都隨著RH的增加而顯著增加,而海拔4700 m的NDVI與RH無顯著相關性。NDVI和EVI與SM的相關系數值最大。

圖2 4 300 m(a,d),4 500 m(b,e)和4 700 m(c,f)的日均土壤溫度和空氣溫度的季節變化Fig. 2 Seasonal changes of daily mean soil temperature (Ts) and air temperature (Ta) along an elevation gradient (4 300~4 700 m)
多重逐步回歸分析表明(表3),3個海拔高度上SM和Ta共同解釋了NDVI和EVI的變異,其中SM的貢獻大于 Ta的貢獻。SM解釋了海拔 4300和4500 m的NDVI和EVI以及海拔4700 m的NDVI的變異;SM和Ts共同解釋了海拔4700 m的EVI的變異,其中SM的貢獻大于Ts的貢獻。
3.1 討論
由于本研究采用的MODIS植被指數產品的空間分辨率為250 m×250 m,而中間海拔的實驗樣地與最低或最高海拔的實驗樣地間的海拔高差為 200 m,這可能會對實驗結果造成一定的影響。盡管如此,3個實驗樣地對應的影像是完全獨立的3個象
元,因此,由于海拔高度差和MODIS植被指數空間分辨率對實驗結果帶來的可能影響應該不大。

圖3 4 300 m(a,d,g),4 500 m(b,e,h)和4 700 m(c,f,i)的日均土壤濕度、空氣相對濕度和飽和水汽壓差的季節變化Fig. 3 Seasonal changes of daily soil moisture (SM), air relative humidity (RH) and vapor pressure deficit (VPD) along an elevation gradient (4 300~4 700 m)

表3 歸一化植被指數、增強型植被指數與土壤溫度、土壤濕度、空氣溫度、相對濕度以及飽和水汽壓差的逐步回歸分析Table 3 Multiple stepwise liner analysis between normalized difference vegetation index (NDVI) or enhanced vegetation index (EVI) and soil temperature (Ts), soil moisture (SM), air temperature (Ta), air relative humidity (RH) and vapor pressure deficit (VPD)
NDVI和EVI隨著海拔的分布特征與地上生物量、根系生物量、土壤全氮、土壤有效氮、土壤微生物量等沿著海拔的分布特征一致(Fu et al.,20145;付剛等,201133)。土壤濕度主導著 NDVI和 EVI的變異,這與前人的研究結果一致。如付剛等(2011)34在當雄草原站的研究發現,空氣相對濕度和飽和水汽壓差共同控制著地上生物量的變異。
本研究中NDVI最大值小于0.7,這說明NDVI的飽和現象在本研究區域可能不存在,這與我們之前的研究結果一致(Fu et al. 2013)3。與EVI相比,NDVI更容易受大氣狀態、土壤和植被背景的干擾(Xiao et al.,2003)391,這可能是造成EVI和NDVI與環境溫濕度因子的不同的相關程度的原因。
相關的研究(Shen et al.,20146780-6782;Wang et al.,2015437)表明,當雄縣氣象站點的NDVI或EVI
與空氣相對濕度的相關系數均大于降水量與NDVI或EVI的相關系數。在本研究中,NDVI或EVI與土壤濕度的相關系數大于NDVI或EVI與空氣相對濕度的相關系數。因此,在本研究區域,與降水量相比,土壤濕度對NDVI或EVI的影響作用可能更大。

圖4 4 300 m(a,d),4 500 m(b,e)和4 700 m(c,f)的歸一化植被指數和增強型植被指數的季節變化Fig. 4 Seasonal changes of normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) along an elevation gradient (4 300~4 700 m)
3個海拔高度的NDVI和EVI與環境溫濕度的相關程度存在著差異,這與前人的研究結果相一致,即植被指數與空氣溫濕度、降水和水汽壓等氣象因子的相互關系隨著氣象站點的不同而不同(Shen et al.,20146780-6782;Sun et al.,20131904;Zhang et al.,20137-9)。空氣溫度都隨著海拔的升高而顯著降低,3個海拔間的土壤濕度也存在著差異,而土壤濕度和空氣溫度共同控制著NDVI和EVI的變異。因此,3個海拔間植被指數與環境溫濕度的不同程度的相關關系可能與3個海拔間不同的環境溫濕度條件有關。Shen et al. (2014)6777-6778也發現,青藏高原生長季節最大的增強型植被指數的變異與不同氣象站點的空氣溫濕度環境背景條件相關。此外,該結論支持了植被指數與環境溫濕度的相互關系在同一植被類型內也存在著差異性的研究結果(Wang et al.,2015)437-439。
相關研究表明(Shen et al.,2014)6770-6776,在過去的13年間(2000─2012),當雄縣氣象站點的生長季節內的最大增強型植被指數顯著降低,這可能主要與其平均氣溫和飽和水汽壓差的顯著增加以及相對濕度的顯著降低有關。在過去的 13年間(2000─2012),當雄縣氣象站點的生長季節內的最大增強型植被指數與平均空氣溫度呈現顯著的負相關關系,與最低相對濕度呈現顯著的正相關關系(Shen et al.,2014)6780-6782。本研究結果表明,NDVI和EVI隨著環境溫度的增加而降低,而隨著環境濕度的增加而增加(表2)。此外,植被指數能夠反映植被生長狀況(Shen et al.,20146766;楊鵬萬等,2014)。暖干化的氣候變化可能對藏北高原高寒草甸的植被指數產生負作用。同時,Fu et al.(2013)1通過模擬增溫實驗發現,暖干化的微氣候環境沒有增加總初級生產力和地上生物量。暖干化的微環境可能會降低土壤氮礦化速率和土壤無機氮含量,而植被生長隨著土壤無機氮含量的增加而增加(Fu et al.,20146;Yu et al.,2014;Zong et al.,2013)。飽和水汽壓差增加會引起氣孔關閉,導致氣孔阻力加大,葉片光合速率隨之降低,進而引起植物光合作用減弱(Almeida et al.,2003)。因此,暖干化的氣候變化可能不利于藏北高原高寒草甸的植被生長,而這可能與暖干化對土壤無機氮和光合速率的負效應有關。
3.2 結論
綜上,土壤濕度主導著藏北高寒草甸歸一化植被指數和增強型植被指數的變異,且這兩個植被指數都隨著土壤濕度的增加而顯著增加。
ALMEIDA A C, LANDSBERG J L. 2003. Evaluating methods of estimating global radiation and vapor pressure deficit using a dense network of automatic weather stations in coastal Brazil [J]. Agricultural and Forest Meteorology, 118(3-4): 237-250.
CAO M K, PRINCE S D, LI K R, et al. 2003. Response of terrestrial carbon uptake to climate interannual variability in China [J]. Global Change Biology, 9(4): 536-546.
FU G, SHEN Z, ZHANG X, et al. 2012a. Calibration of MODIS-based gross primary production over an alpine meadow on the Tibetan Plateau [J]. Canadian Journal of Remote Sensing, 38(2): 157-168.
FU G, SHEN Z, ZHANG X, et al. 2012b. Response of microbial biomass to grazing in an alpine meadow along an elevation gradient on the Tibetan Plateau [J]. European Journal of Soil Biology, 52(9): 27-29.
FU G, SHEN Z X, SUN W, et al. 2015.. A meta-analysis of the effects of experimental warming on plant physiology and growth on the Tibetan Plateau [J]. Journal of Plant Growth Regulation, 34(1): 57-65.
FU G, ZHANG X, YU C, et al. 2014. Response of soil respiration to grazing in an alpine meadow at three elevations in Tibet [J]. Scientific World Journal:doi: 10.1155/2014/265142.
FU G, ZHANG X, ZHANG Y, et al. 2013. Experimental warming does not enhance gross primary production and above-ground biomass in the alpine meadow of Tibet [J]. Journal of Applied Remote Sensing, 7(1):doi: 10.1117/1.jrs.7.073505.
SHEN Z, FU G, YU C, et al. 2014. Relationship between the growing season maximum enhanced vegetation index and climatic factors on the Tibetan Plateau [J]. Remote Sensing, 6(8): 6765-6789.
SHEN Z X, LI Y L, FU G. 2015. Response of soil respiration to short-term experimental warming and precipitation pulses over the growing season in an alpine meadow on the Northern Tibet [J]. Applied Soil Ecology, 90: 35-40.
SUN J, CHENG G W, LI W P, et al. 2013. On the variation of NDVI with the principal climatic elements in the Tibetan Plateau [J]. Remote Sensing, 5(4): 1894-1911.
WANG S H, SUN W, LI S W, et al. 2015. Interannual variation of the growing season maximum normalized difference vegetation index, MNDVI, and its relationship with climatic factors on the Tibetan Plateau [J]. Polish Journal of Ecology, 63(3): 424-439.
WANG S P, DUAN J C, XU G P, et al. 2012. Effects of warming and grazing on soil N availability, species composition, and ANPP in an alpine meadow [J]. Ecology, 93(11): 2365-2376.
XIAO X, BRASWELL B, ZHANG Q, et al. 2003. Sensitivity of vegetation indices to atmospheric aerosols: continental-scale observations in Northern Asia [J]. Remote Sensing of Environment, 84(3): 385-392.
XIAO X, ZHANG Q, BRASWELL B, et al. 2004. Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data [J]. Remote Sensing of Environment, 91(2): 256-270.
XU L L, ZHANG X Z, SHI P L, et al. 2007. Modeling the maximum apparent quantum use efficiency of alpine meadow ecosystem on Tibetan Plateau [J]. Ecological Modelling, 208(2-4): 129-134.
YAO T D, XIE Z C, WU X L, et al. 1991. Climate change since little ice age recorded by Dunde ice cap [J]. Science in China Series B, 34(6):760-767.
YU C Q, SHEN Z X, ZHANG X Z, et al. 2014. Response of soil C and N, dissolved organic C and N, and inorganic N to short-term experimental warming in an alpine meadow on the Tibetan Plateau [J]. Scientific World Journal:doi:10.1155/2014/152576.
ZHANG L, GUO H D, JI L, et al. 2013. Vegetation greenness trend (2000 to 2009) and the climate controls in the Qinghai-Tibetan Plateau [J]. Journal of Applied Remote Sensing, 7(1): doi:10.1117/1.jrs.7.073572.
ZHANG X Z, SHEN Z X, FU G. 2015. A meta-analysis of the effects of experimental warming on soil carbon and nitrogen dynamics on the Tibetan Plateau [J]. Applied Soil Ecology, 87: 32-38.
ZHANG X Z, ZHANG Y G, ZHOUB Y H. 2000. Measuring and modelling photosynthetically active radiation in Tibet Plateau during April-October [J]. Agricultural and Forest Meteorology, 102(2-3): 207-212.
ZONG N, SHI P L, JING J, et al. 2013. Responses of ecosystem CO2fluxes to short-term experimental warming and nitrogen enrichment in an alpine meadow, Northern Tibet Plateau [J]. Scientific World Journal: 415318.
付剛, 周宇庭, 沈振西, 等. 2011. 藏北高原高寒草甸地上生物量與氣候因子的關系[J]. 中國草地學報, 33(4): 31-36.
楊鵬萬, 付剛, 李云龍, 等. 2014. 多光譜相機估算藏北高寒草甸地上生物量[J]. 草業科學, 31(7): 1211-1217.
Relationships between Vegetation Indices and Environmental Temperature and Moisture in An Alpine Meadow along An Elevation Gradient in the Northern Tibet
SHEN Zhenxi, SUN Wei, LI Shaowei, HE Yongtao, FU Gang, ZHANG Xianzhou, WANG Jiangwei
Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
The alpine meadow in the Northern Tibet is an important component of the alpine grasslands worldwide, and it is also one of the most sensitive vegetation types to climatic changes. There are large uncertainties on the relationship between vegetation indices and environmental temperature and moisture, which limits our ability to accurately predict the responses of the vegetation growth in alpine grasslands to future climatic changes. Quantifying the relationship between vegetation indices and climatic factors improves the prediction of vegetation growth in alpine grasslands under future climatic change. Using the correlation analysis and the multiple stepwise regression analysis, we explored the relationships between vegetation indices (i.e. Normalized Difference Vegetation Index, NDVI; Enhanced Vegetation Index, EVI) and soil temperature, soil moisture, air temperature, relative humidity or vapor pressure deficit at three elevations (4 300, 4 500 and 4 700 m) in an alpine meadow from June─September in 2011─2014. The correlation analyses showed that all the correlation coefficients between vegetation indices and environmental temperature and moisture varied with elevation. The NDVI at elevation 4300 m decreased significantly with increasing soil temperature (r = -0.54, P = 0.003) and air temperature (r = -0.42, P = 0.028). The EVI at elevation 4300 m decreased significantly with increasing soil temperature (r = -0.41, P = 0.030), but was not correlated with air temperature (r = -0.31, P = 0.113). Both the NDVIs and EVIs at elevation 4500 m and 4700 m were not correlated with soil temperature (4 500 m NDVI: r = -0.27, P = 0.165; 4 500 m EVI: r = -0.12, P = 0.529; 4 700 m NDVI: r = 0.23, P = 0.250; 4 700 m EVI: r = 0.28, P = 0.156) and air temperature (4 500 m NDVI: r = -0.21, P = 0.276; 4 500 m EVI: r = -0.06, P = 0.748; 4 700 m NDVI: r = -0.03, P = 0.876; 4 700 m EVI: r = -0.08, P = 0.688).The NDVIs (4 300 m: r = 0.79, P = 0.000; 4 500 m: r = 0.80, P = 0.000; 4 700 m: r = 0.52, P = 0.005)and the EVIs (4 300 m: r = 0.61, P = 0.001; 4 500 m: r = 0.66, P = 0.000; 4 700 m: r = 0.53, P = 0.004) at all the three elevations increased significantly with the increasing soil moisture, but the NDVIs (4 300 m: r = -0.68, P = 0.000; 4 500 m: r = -0.56, P = 0.002; 4 700 m: r = -0.40, P = 0.037) and the EVIs (4 300 m: r = -0.56, P = 0.002; 4 500 m: r = -0.49, P = 0.008; 4 700 m: r = -0.46, P = 0.014)at all the three elevations decreased significantly with the increasing vapor pressure deficit. The EVIs at all the three elevations increased significantly with increasing air relative humidity (4 300 m: r = 0.48, P = 0.010; 4 500 m: r = 0.50, P = 0.006; 4 700 m: r = 0.39, P = 0.039). The NDVIs at elevation 4 300 m (r = 0.63, P = 0.000) and 4500 m (r = 0.57, P = 0.001)increased significantly with increasing air relative humidity, but the NDVI at elevation 4700 m was not correlated with air relative humidity (r = 0.35, P = 0.070). The correlations between the NDVIs or EVIs and environmental temperature or moisture varied with elevation. The correlations between the NDVIs and environmental temperature and moisture were different from those between the EVIs and environmental temperature and moisture. The multiple stepwise regression analyses showed that the soil moisture alone explained the variation of the NDVIs at all three elevations and also explained the variation of the EVIs at 4300 m and at 4500 m, but at 4700 m the soil moisture and the soil temperature together explained the variation of the NDVI with relative greater contribution of soil moisture than soil temperature. Therefore, in the alpine meadow of the Northern Tibet, (1) the sensitivity of vegetation indices to climatic changes may change with elevation; (2) the sensitivity of NDVI to climatic change might differ from that of EVI; and (3) Soil moisture may play a predominant role in determining the seasonal variation of the NDVIs and the EVIs in the alpine meadow in the Northern Tibet.
alpine meadow; normalized difference vegetation index; enhanced vegetation index; the Northern Tibet; climatic change
10.16258/j.cnki.1674-5906.2015.10.001
Q948;X171.1
A
1674-5906(2015)10-1591-08
沈振西,孫維,李少偉,何永濤,付剛,張憲洲,王江偉. 藏北高原不同海拔高度高寒草甸植被指數與環境溫濕度的關系[J]. 生態環境學報, 2015, 24(10): 1591-1598.
SHEN Zhenxi, SUN Wei, LI Shaowei, HE Yongtao, FU Gang, ZHANG Xianzhou, WANG Jiangwei. Relationships between Vegetation Indices and Environmental Temperature and Moisture in An Alpine Meadow along An Elevation Gradient in the Northern Tibet [J]. Ecology and Environmental Sciences, 2015, 24(10): 1591-1598.
國家自然科學基金項目(41171084;31470506;31370458);中國科學院西部之光項目“藏北高寒草甸牲畜承載力對氣候變化和放牧的響應”;國家星火計劃項目“優質飼草種植與奶牛健康養殖技術集成與示范”;西藏飼草專項;科技支撐計劃(2013BAC04B01)“西藏高原典型退化生態系統修復技術研究與示范”
沈振西(1963年生),男,副研究員,研究方向為全球變化與高寒草地生態系統。E-mail: shenzx@igsnrr.ac.cn *通信作者:付剛(1984年生),男,助理研究員,博士,研究方向為全球變化與高寒生態系統。E-mail: fugang@igsnrr.ac.cn; fugang09@126.com
2015-06-12