999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于3-氧醚乙酸-鄰苯二酸和N-輔助配體的鋅和鎘配合物的合成、晶體結構及熒光性質

2015-12-15 07:18:58范會濤陳寶寬馮超強
無機化學學報 2015年4期

范會濤 李 波 趙 強 陳寶寬 馮超強

(南陽師范學院化學與制藥工程學院,南陽473061)

基于3-氧醚乙酸-鄰苯二酸和N-輔助配體的鋅和鎘配合物的合成、晶體結構及熒光性質

范會濤 李 波*趙 強 陳寶寬 馮超強

(南陽師范學院化學與制藥工程學院,南陽473061)

水熱法合成得到2個配合物,{[Zn7(L)4(bpe)2(μ3-OH)2(H2O)8]·4H2O}n(1),和{[Cd3(L)2(bpy)2.5(H2O)]·5.5H2O}n(2)(H3L=3-(carboxymethoxy)benzene-1,2-dioic acid,bpe=1,2-bis(4-pyridyl)-ethene,bpy=4,4′-bipyridine),并采用元素分析、紅外光譜、熱重和X-射線單晶衍射對其結構進行表征。配合物1中,配體L3-和bpe連接[Zn5(μ3-OH)2]中心形成一維鏈,這樣的鏈通過氫鍵連接成三維的超分子結構。配合物2呈現(3,3,6)連接的網狀結構。此外,對配合物1和2的熒光性質進行了研究。

3-氧醚乙酸-鄰苯二酸;晶體結構;熒光性質;拓撲

0 Introduction

In recent years,the rational design and assembly of coordination polymers have received remarkable attention in order to develop new function materials with various potential applications[1-5].The construction of coordination polymers is highly influenced by many factors such as the metal coordination preferences and multidentate organic ligands geometries,etc[6-13]. Usually,multidentate organic ligands may potentially provide various coordination modes and favor the construction of polynuclear metal clusters[14].Newaromatic tricarboxylic acid 3-(carboxymethoxy) benzene-1,2-dioic acid(H3L),with two rigid carboxylic groups and one flexible group of-OCH2-COO-at adjacent positions on the aromatic ring,has greater conformational freedom,which can change their conformations to meet the coordination requirement of the metal ion give rise to polynuclear metal clusters, and result in unique networks.In addition,only some coordination polymers based on bifunctional carboxylic acid ligand containing both rigid and flexible carboxylate coordinating groups have sporadically appeared in the literatures[15-17].In the other hand,the use of auciliary ligands is also an effective method for the construction of coordination polymers owing to the fact that they can mediate the coordination needs of the metal center[18-19].

In this paper,we have engaged in the research of coordination polymers based on H3L with d10metal centers(Zn,Cd)to understand the coordination chemistry of H3L and prepared new materials with interesting structural topology.Herein,we would like to present two coordination polymers:{[Zn7(L)4(bpe)2(μ3-OH)2(H2O)8]·4H2O}n(1),{[Cd3(L)2(bpy)2.5(H2O)]·5.5H2O}n(2)(bpe=1,2-bis(4-pyridyl)-ethene,bpy=4,4′-bipyridine),in which the L3-ligand exhibits different coordination modes and makes the complexes interesting 3D framework structures.

1 Experimental

1.1 Materials and measurements

The ligand H3L was synthesized according to the literatures[15,17].All other starting materials were of analytical grade and obtained from commercial sources without further purification.Elemental analysis for C,H,and N were performed on a Perkin-Elmer 240 elemental analyzer.The FTIR spectra were recorded from KBr pellets in the range from 4 000 to 400 cm-1on a Bruker VECTOR 22 spectrometer. Luminescence spectra for the solid samples were recorded on a Hitachi 850 fluorescence spectrophotometer.Thermal analyses were performed on a SDT 2960 thermal analyzer from room temperature to 800℃at a heating rate of 20℃·min-1under nitrogen flow.

1.2 Syntheses of the complexes

1.2.1 Synthesis of{[Zn7(L)4(bpe)2(μ3-OH)2(H2O)8]· 4H2O}n(1)

A mixture of H3L(12.0 mg,0.05 mmol),bpe(9.1 mg,0.05 mmol),Zn(NO3)2·6H2O(15.0 mg,0.05 mmol), and KOH(8.4 mg,0.15 mmol)in distilled water(7 mL) was placed in a Teflon-lined stainless steel container, heated to 120℃for 3 days.After cooling to room temperature,the colorless block crystals of 1 were obtained in 67%yield based on zinc.Anal.Calcd.for C64H64N4O41Zn7(2 002.78)(%):C,38.38;H,3.22;N, 2.80.Found(%):C,38.41;H,3.28;N,2.72.IR(KBr, cm-1):3 396(m),1 608(s),1 560(s),1 418(s),1 363 (s),1 230(m),1 097(w),1 069(w),915(w),812(m), 772(m),689(w),621(w),589(w).

1.2.2 Synthesis of{[Cd3(L)2(bpy)2.5(H2O)]·5.5H2O}n(2)

Complex 2 was synthesized by analogy to 1 except that Cd(NO3)2·4H2O(15.4 mg,0.05 mmol)and bpy (11.7 mg,0.075 mmol)were used instead of Zn(NO3)2· 6H2O and bpe.Colorless block crystals of 2 were obtained in 72%yield based on cadmium.Anal. Calcd.for C90H86Cd6N10O41(2 638.09)(%):C,40.97;H, 3.29;N,5.31.Found(%):C,41.02;H,3.28;N,5.49. IR(KBr,cm-1):3 422(m),1 617(s),1 399(m),1 256 (w),1 236(w),1 208(w),1 094(w),1 070(w),1 033 (w),839(w),760(m),617(w).

1.3 Structure Determ inations

Single-crystal X-ray diffraction data of complexes 1 and 2 were collected on a Bruker Smart Apex CCD diffractometer[20]equipped with graphite monochromatized Mo Kα radiation(λ=0.071 073 nm)at room temperature using the ω-scan technique.Empirical absorption corrections were applied to the intensities using the SADABS program[21].The structure was solved by direct methods using SHELXS-97[22]computer program and refined by full-matrix least-squares methods on F2with the SHELXL-97[23]program package. All nonhydrogen atoms were subjected to anisotropic refinement.The hydrogen atoms of the organic ligands were included in the structure factor calculation at idealized positions using a riding model and refined isotropically.The crystallographic data and selectedbond distances and angles for 1 and 2 are listed in Table 1 and Table 2,respectively.

CCDC:965303,1;965304,2.

Table1 Crystal data and structure refinement for com pounds 1 and 2

Table2 Selected bond lengths(nm)and angles(°)for compounds 1 and 2

Continued Table 2

2 Results and discussion

2.1 Description of the Structure

2.1.1 {[Zn7(L)4(bpe)2(μ3-OH)2(H2O)8]·4H2O}n(1)

Single crystal X-ray diffraction revealed that complex 1 crystallized in the triclinic system with space group P1,and can be formulated as{[Zn7(L)4(bpe)2(μ3-OH)2(H2O)8]·4H2O}n(1).There are four crystallographically independent Znions,two L3-ligands,one bpe ligand,oneμ3-OH anion,four coordinated water molecules,and two free water molecules in the asymmetric unit.Zn1 ion was refined with an occupancy factor of 0.5.As illustrated in Fig. 1,Zn1 is six-coordinated with a distorted octahedral geometry with four oxygen atoms from four L3-ligands, and two hydroxyl groups.Zn2,Zn3,and Zn4 display square-pyramidal[O5]and[O4N]geometries,respectively.The Zn-N bond length is 0.201 6(6),0.203 4(6) nm and the Zn-O bond lengths are in the range of 0.192 6(5)~0.227 0(5)nm,which are in agreement with those observed in other structures[24-25].The N-Zn-O and O-Zn-O angles are in the range of 95.5(2)°~130.9(2)°and 80.2(2)°~180.0°,respectively.Clearly, five Zncenters form a[Zn5(μ3-OH)2]cluster linked by two3-hydroxyl oxygen(O1W)atom(Fig.2).All the flexible and rigid carboxyl groups of the L3-ligand are fully deprotonated and adopt the μ3-η2:η1:η0and μ4-η2: η1:η1bridging modes(Scheme 1a,1b).The remaining Zn4 ions are linked by the adjacent pentanuclear [Zn5(μ3-OH)2]subunits to produce infinite chain(Fig. 3).Such chains are associated through hydrogen bonding(O3W-O6#8,O3W-O13#6,O4W-O3#4, O4W-O7#4,O5W-O14#5,O5W-O11#5)to give rise to a three-dimensional supramolecular framework(Fig.4). The geometric parameters of hydrogen bonds are summarized in Table 3.

Scheme 1 Coordination modes of the L3-anion in 1 and 2

Fig.1 Metal coordination and atom labeling in complex 1(thermal ellipsoids at 50%probability level)

Fig.2 Coordination environment of[Zn5(OH)2]cluster in 1

2.1.2 {[Cd3(L)2(bpy)2.5(H2O)]·5.5H2O}n(2)

In complex 2,the asymmetric unit consists of three crystallographically independent Cdcenters, two L3-ligands,two and a half bpy ligands,one coordinated water molecule,and five and a half free water molecules(Fig.5).Three independent Cdions exhibiting slightly distorted octahedral[O4N2]and [O5N1]coordination geometries,respectively.The Cd-O and Cd-N bond distances are in the ranges of 0.223 0(3)~0.249 6(3)nm and 0.230 7(5)~0.235 7(5)nm, respectively.The coordination modes of μ4-η3:η1:η1and μ4-η3:η2:η1for L3-is found in complex 2(Scheme 1c,1d).As shown in Fig.6,Cd1 and Cd2 centers are bridged by a pair of carboxylate groups into a dimer unit.Neighboring dimer units are further linked by L3-ligands to form an infinite metal-carboxylate ribbon.Such ribbons are associated together by Cd3 and one kind of bpy(N5,N5#6)to generate a 2D sheet.As illustrated in Fig.7,adjacent layers are linked through the remaining two kinds of bpy ligands(N1-N2,N3-N4) to produce an overall three-dimensional coordination polymer encapsulating free water molecules.Among the water molecules,O1W,O2W and O4W-O6W show tricoordinated,while all other water molecules are mono-or di-coordinated modes with the O…O distance ranging from 0.261 5(18)to 0.318 1(12)nm.Notably, there are rich hydrogen bonds between the free water molecules and the coordinated carboxylic oxygen atoms, which bring further stability for the structure.The geometric parameters of hydrogen bonds are summarized in Table 4.Better insight into such an intricate framework can be achieved by using the topological approach,if the L3-anion can be considered as a 3-connected node,Cd1 and Cd2 as a 6-connected node,Cd3 as a 3-connected node,respectively.Thus,a (3,3,6)-connected network is formed with a Schl?fli

Fig.3 Infinite chain in 1

Fig.4 3D framework of 1 forming through hydrogen bonding

Table3 Selected hyd rogen-bonding geometries for 1

Fig.5 Metal coordination and atom labeling in complex 2(thermal ellipsoids at 50%probability level)

Fig.6 View of a 2D layer connecting bpy ligands

Fig.7 3D framework of 2 connecting bpy ligands

Table4 Selected hyd rogen-bonding geometries for 2

symbol of{4.5.7}2{42.5.68.72.82}{52.8}(Fig.8).

Fig.8 Schematic representation of the(3,3,6)-connected topology of 2

2.2 TG analysis

Fig.9 TG curves for compounds 1 and 2

Thermogravimetric analyses were carried out for the two compounds and corresponding TG curves are shown in Fig.9.For complex 1,a weight loss of 10.28%is detected in the range of 121~181℃ corresponding to the loss of six water molecules (Calcd.10.78%),and then,a plateau region follows. The further weight loss is observed at about 321℃due to the decomposition of overall framework. According to the type of water in compound 2,the loss of coordination water takes place at temperature above 283℃(Obsd.8.83%;Calcd.8.87%).Rapid weight loss is observed from 316℃,which indicated collapse of the whole structure.

2.3 Photolum inescence properties

Emission behaviors of complexes 1 and 2 were investigated in the solid-state at room temperature and shown in Fig.10.It was observed that the emission peaks occurred at ca.458(λex=368 nm)and 343 nm (λex=274 nm)for complexes 1 and 2,respectively.In order to understand the nature of these emission bands,the photoluminescence properties of free H3L ligand was measured,upon excitation at ca.274 nm, which shows similar emission at ca.345 nm. Compared to the emission peak for free,the emission of 1 with the significant red-shift of luminescence may be mainly attributed to the coordination interactions of the L3-ligand,which effectively increases the rigidity of the ligand and reduces the loss of energy by radiationless decay[26-28].The emission of complex 2 can probably be assigned to the intraligand(π-π*)fluorescent emission because similar emission is observed for the free H3L ligand.

Fig.10 Solid-state emission spectra of complexes 1 and 2,and free H3L ligand at room temperature

3 Conclusions

In summary,two new coordination polymers based on the assembly of H3L and co-ligands with different divalent zinc and cadmium salts under hydrothermal conditions have been synthesized and characterized.Complex 1 shows metal-organic chain structure built from[Zn5(μ3-OH)2]subunit,and the adjacent chains are further linked through hydrogen bonding to form a 3D supramolecular structure. Complex 2 exhibits a three-dimensional metal-organic framework,which is also consolidated by the hydrogen bonding.The study reveals that the multi-flexible ligand can be used as a good multidentate bridging ligand to construct novel coordination polymers based on polynuclear clusters.

[1]Halder G J,Kepert C J,Moubaraki B,et al.Science,2002, 298:1762-1765

[2]Tranchemontagne D J,Mendoza-Cortés J L,O′Keeffe M, et al.Chem.Soc.Rev.,2009,38:1257-1283

[3]Ma L F,Wang L Y,Du M,et al.Inorg.Chem.,2010,49:365 -367

[4]Du M,Li C P,Chen M,et al.J.Am.Chem.Soc.,2014,136: 10906-10909

[5]Dong X Y,Li B,Ma B B,et al.J.Am.Chem.Soc.,2013, 135:10214-10217

[6]Gutschke S O H,Price D J,Powell A K,et al.Angew. Chem.,Int.Ed.,2001,40:1920-1923

[7]Li B,Zang S Q,Ji C,et al.Dalton Trans.,2011,40:788-792

[8]Suh M P,Ko J W,Choi H J.J.Am.Chem.Soc.,2002,124: 10976-10977

[9]Pan L,Woodlock E B,Wang X T.Inorg.Chem.,2000,39: 4174-4178

[10]Chen W,Wang J Y,Chen C,et al.Inorg.Chem.,2003,42: 944-946

[11]Zhang Z,Ma J F,Liu Y Y,et al.Cryst.Growth Des.,2013, 13:4338-4348

[12]Xu C Y,Li L K,Wang Y P,et al.Cryst.Growth Des., 2011,11:4667-4675

[13]Aliev S B,Samsonenko D G,Rakhmanova M I,et al.Cryst. Growth Des.,2014,14:4355-4363

[14]Xiong K C,Jiang F L,Gai Y L,et al.Inorg.Chem., 2012,51:3283-3288

[15]Cao X Y,Zhang J,Cheng J K,et al.CrystEngComm, 2004,6:315-317

[16]Cao X Y,Zhang J,Li Z J,et al.CrystEngComm,2007,9: 806-814

[17]Wang G H,Lei Y Q,Wang N,et al.Cryst.Growth Des., 2010,10:534-540

[18]Du M,Li C P,Liu C S,et al.Coord.Chem.Rev.,2013,257: 1282-1305

[19]LaDuca R L.Coord.Chem.Rev.,2009,253:1759-1792

[20]SMART and SAINT,Area Detector Control and Integration Software,Siemens Analytical X-Ray Systems,Inc.:Madison, WI(USA),1996.

[21]Sheldrick G M.SADABS 2.05,University of G?ttingen, Germany,2000.

[22]Sheldrick G M.SHELXS-97,Program for the Solution of Crystal Structures,University of G?ttingen,Gttingen, Germany,1997.

[23]Sheldrick G M.SHELXL-97,Program for the Refinement of Crystal Structures,University of G?ttingen,G?ttingen, Germany,1997.

[24]Zang S Q,Fan Y J,Li J B,et al.Cryst.Growth Des., 2011,11:3395-3405

[25]Zang S Q,Cao L H,Liang R,et al.Cryst.Growth Des., 2012,12:1830-1837

[26]Dai J C,Wu X T,Fu Z Y,et al.Inorg.Chem.,2002,41: 1391-1396

[27]Zhang L Y,Liu G F,Zheng S L,et al.Eur.J.Inorg.Chem., 2003,16:2965-2971

[28]Wang X L,Qin C,Li Y G,et al.Inorg.Chem.,2004,43: 1850-1856

Zinc and Cadm ium Coordination Polymers Based on 3-(Carboxymethoxy)benzene-1, 2-dioic Acid and N-donor Ancillary Ligands:Syntheses,Crystal Structures, and Lum inescent Properties

FAN Hui-Tao LI Bo*ZHAO Qiang CHEN Bao-Kuan FENG Chao-Qiang
(College of Chemistry and Pharmaceutical Engineering,Nanyang Normal University,Nanyang,Henan 473061,China)

Two coordination polymers,{[Zn7(L)4(bpe)2(μ3-OH)2(H2O)8]·4H2O}n(1),and{[Cd3(L)2(bpy)2.5(H2O)]·5.5H2O}n(2)(H3L=3-(carboxymethoxy)benzene-1,2-dioic acid,bpe=1,2-bis(4-pyridyl)-ethene,and bpy=4,4′-bipyridine),have been synthesized under hydrothermal condition.Both complexes were characterized by elemental analysis,IR spectra,thermogravimetric analysis(TGA),and single-crystal X-ray crystallography.Complex 1 features a threedimensional supramolecular architecture linked through hydrogen bonding interactions in which the secondary building unit(SBU)is[Zn5(μ3-OH)2]cluster.Complex 2 features three-dimensional metal-organic framework with (3,3,6)-connected topology.The luminescence behaviors of 1 and 2 were also discussed.CCDC:965303,1; 965304,2.

3-(carboxymethoxy)benzene-1,2-dioic acid;crystal structure;luminescence properties;topology

O614.24+1;O614.24+2

A

1001-4861(2015)04-0848-09

10.11862/CJIC.2015.068

2014-11-21。收修改稿日期:2014-12-16。

河南省教育廳科學技術研究重點項目基礎研究計劃(No.14A150026)、南陽師范學院高層次人才科研啟動費(No.ZX2014041)項目資助。*

主站蜘蛛池模板: 热re99久久精品国99热| 日本黄色不卡视频| 精品国产免费观看一区| 人妻精品全国免费视频| 亚洲狼网站狼狼鲁亚洲下载| 久夜色精品国产噜噜| 特级毛片免费视频| 欧美日韩一区二区在线免费观看| 伊人狠狠丁香婷婷综合色| 午夜少妇精品视频小电影| 免费在线不卡视频| 2020最新国产精品视频| 久久婷婷五月综合色一区二区| 久久成人免费| 在线视频一区二区三区不卡| 国内精品久久久久鸭| 一区二区偷拍美女撒尿视频| 成人午夜网址| 亚洲精品波多野结衣| 99999久久久久久亚洲| 亚洲成人免费在线| 91久久天天躁狠狠躁夜夜| 91午夜福利在线观看精品| 欧美在线一二区| 亚洲精品爱草草视频在线| 91蝌蚪视频在线观看| 六月婷婷精品视频在线观看| 亚洲狼网站狼狼鲁亚洲下载| 国产综合欧美| 五月激情婷婷综合| 五月婷婷亚洲综合| 亚洲黄色激情网站| 成人av手机在线观看| 在线精品视频成人网| 欧洲高清无码在线| 色噜噜在线观看| 国产99精品久久| 99ri国产在线| 91热爆在线| 国产人人射| 最新国产麻豆aⅴ精品无| 欧美三級片黃色三級片黃色1| 免费观看精品视频999| 色婷婷成人| 亚洲福利视频网址| 精品伊人久久大香线蕉网站| 色悠久久久| 日韩高清成人| 国产黄色爱视频| 性欧美精品xxxx| 人妖无码第一页| 精品自拍视频在线观看| 精品国产Av电影无码久久久| 久久婷婷国产综合尤物精品| 亚洲第一色网站| 国产91精品最新在线播放| 久久国产精品嫖妓| 无码精品国产dvd在线观看9久| 在线观看av永久| 国产乱子伦手机在线| 精品人妻AV区| 伊人成人在线视频| 欧美日韩国产在线观看一区二区三区 | 天天摸夜夜操| 日本黄网在线观看| 白浆免费视频国产精品视频| 国产在线小视频| 国产91丝袜在线播放动漫| 精品乱码久久久久久久| 天天干天天色综合网| 免费无码一区二区| 秋霞国产在线| 成年av福利永久免费观看| 人妻精品久久久无码区色视| 国产亚洲精品无码专| 四虎永久免费地址| 久久精品女人天堂aaa| 日本手机在线视频| 欧美国产三级| AV片亚洲国产男人的天堂| 亚洲六月丁香六月婷婷蜜芽| 亚洲国语自产一区第二页|