洪 佳,李 芳 (上海理工大學 管理學院,上海200093)
HONG Jia, LI Fang (School of Management, University of Shanghai for Science & Technology, Shanghai 200093, China)
市場經濟的快速發展使得制造商不斷推陳出新,產品更新換代的速度不斷加快,大量產品在使用壽命未終結時便遭淘汰,給社會帶來了巨大的資源浪費。然而,近年來隨著地球上不可再生資源的日益枯竭,傳統經濟不斷向循環經濟發展,人們的環保意識不斷增強,對可持續發展的認識不斷深入,世界各國紛紛加強了對環境保護的立法,廢棄產品的回收再制造也越來越受到人們的重視,閉環供應鏈成為學術界關注的熱點問題。
關于再制造的回收定價策略是閉環供應鏈研究的難點之一。逆向供應鏈與傳統供應鏈的運作機制截然不同,傳統的供應鏈定價策略在閉環供應鏈中不再適用,因此閉環供應鏈的實施仍需要通過大量理論指導以及實踐探索,才能使之達到平穩運營的狀態[1]。
回收處理后再制造品定價策略的復雜性主要體現在:若定價過高,由于產品核心組件及各零部件在使用過后存在磨損,其質量本身必定存在一定的缺陷,生產廠商需要花費更多的資源用于維修和再制造生產,使得生產成本過高,從而影響生產廠商的收益;若定價過低,將無法從市場上回收到足夠數量的廢舊品,制造廠商無法大量使用價格低廉的廢舊品從事再制造生產,需要重新大量購買新的原材料,不利于整個閉環供應鏈的發展,造成資源的極大浪費,阻礙我國經濟的可持續發展[2]。所以,研究廢舊品的回收定價策略對閉環供應鏈的發展至關重要。
綜觀已有的文獻,其研究均假設回收的廢品質量單一,并且假定了統一的回收價格,顯然這一假設與實際情況不符。因為消費者在使用過程中,會造成產品的核心組件以及各個零部件不同程度的磨損和折舊,故回收的廢舊品在質量上也勢必存在差異。本文在前人研究的基礎上,考慮包含多種質量等級的廢品回收,尋求不同質量等級下最優的回收價格策略,以期對我國閉環供應鏈的發展起到指導作用,推進我國循環經濟的發展。
閉環供應鏈有三種回收模式,零售商回收模式(MRCRM)、制造商回收模式(MRCM)、第三方回收模式(MRCTM)[3],而Savaskan R C、Bhattacharya S 等人研究表明:從確定的線性需求出發,比較閉環供應鏈中三種不同回收渠道的效率,結果表明零售商回收模式是最有效的回收模式[4]。鑒于此,本文選擇零售商回收模式的閉環供應鏈為研究對象,把制造商和零售商的回收價格作為決策變量,并假設不同零售商的回收模式與成本結構相同,簡化模型只考慮單個零售商和單個制造商的情況[5]。
國外學者Thierry M.C.等人將零售商回收的舊品依據重新利用的方式不同分為三類:直接再利用、修理再利用、再生再制造[6]。鑒于此,本文假設在消費者使用過后,零售商根據廢品的磨損情況,將廢品的質量分為A、B、C三個等級,其中A類品為優品,B類品為良品,C類品為中等品,生產廠商對這三類品的再制造過程中所花費的成本不同,其中C類品所花費的成本最多,B類品次之,A類品再制造過程所花費的成本最小。

圖1 閉環供應鏈廢品回收再造示意圖
結合圖1 對本文的模型構建思路進行簡單描述:
如圖1 所示,制造商對商品定價為P,零售商以P價格進行批發,零售商再將商品分銷給消費者,此過程為正向供應鏈部分,即商品的銷售通道。在消費者使用過后,商品變為廢舊品,零售商根據磨損情況,將其質量分為A、B、C三個等級,三類品均可用于再制造,但它們用于再制造的生產成本不同。對于A類的優品,制造商將其用于再制造的單位邊際生產成本為Cm;對于B類品,其單位邊際再生成本為L1Cm;對于C類品,其單位邊際再生成本為L2Cm(其中,L2>L1>1)。零售商在回收A、B、C三類廢品時,分別以Pa、Pb、Pc的價格從消費者處進行回收;制造商再以PA、PB、PC的價格從零售商處進行回收用于再制造,此過程為逆向供應鏈部分,即商品的回收通道。
假設Q為整個市場廢舊品的擁有量,其中a、b、c分別為市場中A類品、B類品和C類品占整個廢舊品市場的比例,則三參數必滿足條件:a+b+c=1。通過參考王玉燕等人的研究[7],可將零售商對三類舊品的回收量XA、XB、XC分別定義為關于單位舊品回收價格的函數,則三類舊品的回收量分別如下:

其中α、β、γ 分別為三類舊品的價格彈性參數,且α, β, γ∈[0,1];k為換算常數。用φ 表示政府制定的相關環境保護法所規定的廢舊品回收比例,則必須滿足XA+XB+XC≥φQ,則XC需滿足φQ-XA-XB≤XC≤(1-a-b)Q。零售商再以PA、PB、PC的價格回銷給制造商,零售商的單位邊際運營成本為Cr。
πm、πr、π 分別表示制造商、零售商以及整個閉環供應量系統的利潤,其中π=πm+πr。
本文進行模型構建時采用的參數及其含義均與上述一致。
本文建立的關于廢舊品回收的分級定價回收模型基本假設如下:
假設1:不同零售商的回收模式與成本結構相同,可以將模型簡化,只考慮單個零售商和單個制造商的情況;
假設2:利用三類舊品的單位再造成本小于新產品的單位制造成本C,即Cm <L1Cm <L2Cm <C,表示制造商利用回收的廢舊品制造商品是有利可圖的,否則制造商回收廢舊品毫無意義;
假設3:模型中閉環供應鏈的決策是單期的;
假設4:閉環供應鏈中成員的決策方式為完全信息下非合作二階段斯坦博格博弈模型[8]。
根據上述閉環供應鏈的廢品回收模式、設置的參數以及基本假設,建立閉環供應鏈分級定價回收模型。從整個閉環供應鏈廢舊品回收再造的流程示意圖來看,制造商、零售商以及整個閉環供應鏈的收益分別如下:

分散定價決策,即決策雙方均以各自的利潤最大化為目標,如上假設,決策雙方制造商和零售商構成了完全信息下非合作二階段斯坦博格博弈模型,即Stackelberg 主從博弈模型,此時制造商為領導者,零售商為追隨者,制造商首先制定自己的批發價格P和對零售商的三類舊品回收價格PA、PB、PC,以使自己的收益最大化;然后零售商根據制造商的價格策略來確定自己的市場回收價格Pa、Pb、Pc,依據逆向歸納法對模型進行兩階段求解[9],可得制造商對零售商三類舊的最優品回收價格,如下:


在聯合定價策略模型中,可以將整個閉環供應鏈看作是一個集成式的“超組織”結構,閉環供應鏈上制造商與零售商通過協商合作共同確定三類廢舊品的市場回收價格Pa、Pb、Pc,并假設在此條件下,閉環供應鏈的系統利潤為:

其中,上標“—”表示在聯合定價的策略下,同下文。將上式中π 分別對Pa、Pb、Pc求偏導后,再求上式的最大值,可得:綜上所述,對分散決策下和聯合定價決策下的閉環供應鏈系統利潤進行比較,易證:


通過上述的證明可知:制造商和零售商通過合作進行聯合定價時,整個閉環供應鏈系統將會獲得更高的收益。
本節欲通過算例分析來驗證兩種決策模式下的最優定價策略以及各決策主體的收益。假定某種產品的價格服從正態分布,即P~N(700,50),其他參數α=0.82, β=0.67, γ=0.51,k=1.34,Cm=150,Cr=30,L1=1.5,L2=2,r=0.75,由于目前國內還尚未頒布相關的環境保護法令,因此令φ=0。利用MATLAB7.0 對模型進行數值仿真,可確定模型中各決策變量的數值,并分析比較各數值的大小,得表1 如下:

表1 不同決策模式下各決策變量的最優解及其比較
通過表1 中各參數的比較可知:聯合定價的決策模型明顯優于分散定價決策模型,可使制造商和零售商的收益都增加。假使整個供應鏈的成員都是理性的經濟人,追求各自的利益最大化,制造商和零售商都將選擇聯合定價決策模型。
本文運用博弈論的思想方法建立數學模型,求解出閉環供應鏈中的博弈雙方分別在分散決策和聯合定價決策下各自的最優定價策略,并分別對模型進行數值仿真,得出主要結論為:采取聯合定價策略時,整個閉環供應鏈的系統利潤更高,且博弈雙方的利潤都顯著提高,顯然聯合定價的策略優于分散決策的定價策略;在聯合定價的策略下,零售商的市場回收價格明顯高于分散決策情況下的市場回收價格,根據三類舊品回收量XA、XB、XC分別是關于單位廢舊品回收價格的函數可知,三類舊品回收量都將提高,這說明在聯合定價的策略將帶來更好的節能環保效益,有利于我國循環經濟和環保事業的發展。
[1] 王玉燕,李幫義,申亮. 供應鏈、逆向供應鏈系統的定價策略模型[J]. 中國管理科學,2006,14(4):40-45.
[2] 葛靜燕,黃培清. 基于博弈論的閉環供應鏈定價策略分析[J]. 系統工程學報,2008,23(1):111-115.
[3] Savaskan R.C., Bhattachary S., Van Wassenhovc L.N.. Channel choice and Coordination in a Remanufacturing Environment[Z].Working Paper, 1999.
[4] Savaskan R C, Bhattacharya S, Wassenhove L N V. Closed-loop Supply Chain Models with Product Remanufacturing[J].Management Science, 2004,50(2):239-252.
[5] Savaskan R C, Wassenhove L N V. Reverse Channel Design: The Case of Competing Retailers[J]. Management Science,2006,52(1):1-14.
[6] Thierry M.C., Salomon M., Van Nunen J.. Van Wassenhovc L Strategic Issuses in Product Recovery Management[J]. California Management Review, 1995,37(2):114-135.
[7] 王玉燕,李幫義,樂菲菲. 兩個閉環供應鏈的定價模型研究[J]. 預測,2006(6):70-73.
[8] Cachon G.P. Supply Chain Coordination with Contracts[Z]. Working Paper, 2003.
[9] 林欣怡,孫浩,達慶利. 隨機環境下再制造產品的定價策略研究[J]. 運籌與管理,2012(6):149-153.
[10] 王巍. 閉環供應鏈分級定價回收策略研究[J]. 統計與決策,2010(5):174-176.