張東東,尚德靜
(遼寧師范大學 生命科學學院,遼寧 大連 116081)
抗菌肽作為新型抗感染藥物的潛力及應用前景
張東東,尚德靜Δ
(遼寧師范大學 生命科學學院,遼寧 大連 116081)
抗菌肽廣泛存在于各種生物中,是先天免疫反應的保守組分,對革蘭氏陰性細菌、革蘭氏陽性細菌、真菌、原蟲等有廣泛地殺滅作用,尤其對耐藥性細菌有抗菌活性,有希望成為新型的抗生素治療性藥物。近年來發現抗菌肽具有免疫調節活性,是一種新興的治療理念,它的選擇性調節是一種新型抗感染策略。抗菌肽能促進先天性免疫應答和選擇性地調節致病菌引起的炎癥反應。本文主要闡述了抗菌肽作為先天性免疫調節因子的作用機制,它們在先天性免疫和適應性免疫界面的作用,以及它們作為新型抗感染和免疫調節藥物的潛力及應用前景。
抗菌肽;免疫調節;抗感染
抗菌肽是天然廣譜抗菌藥物,它們廣泛分布于自然界,從原核生物到脊椎動物都有分布[1]。這些分子是先天免疫系統的保守組分,能選擇性地激活體內先天免疫應答,對敗血癥等感染性疾病有良好的預防和保護作用。抗菌肽也可以調節細胞的功能,例如趨化作用、基因轉錄、細胞因子產生和釋放,增強抗菌免疫力,同時減少炎癥引起的組織損傷。另外,抗菌肽能參與傷口愈合和血管生成過程[2-3]。因此,抗菌肽有希望成為新型抗生素,幫助治療由致病菌引起的感染性疾病。
抗菌肽的抗菌活性作為最早已知特性之一,已被廣泛討論。它們不僅是抗菌分子(甚至對傳統抗生素耐藥菌株),而且對真菌、包膜病毒(如HIV、流感)、寄生性原蟲及癌細胞等具有直接的殺滅活性[4-6]。抗菌肽可作用于脂質雙分子層通過不同的機制使細菌細胞死亡:①改變膜電勢[7];②形成跨膜孔[8-9];③修改膜脂電流分布,導致膜結構的去穩定性[7, 10];④觸發致死程序,如誘導自溶酶[11];透膜后作用于細胞內的重要靶點[12]。
然而,不是所有的抗菌肽都是通過直接殺菌,而是通過參與免疫調節發揮保護作用。例如,人抗菌肽LL-37可預防體內細菌感染,在磷酸鹽緩沖液中可顯示出抑菌活性,但在生理學相關組織培養基中卻不能減少細菌負荷[13]。此外,已證明合成的抗菌肽沒有直接抑菌活性,但卻能有效的防止組織損傷和體內細菌感染[1, 2, 14, 15, 7, 13]。雖然這些免疫調節功能不是產生直接的抗菌活性,而是補充和增強身體抗感染能力,但是它們可以影響感染的結果。本綜述認為抗菌肽的選擇性免疫調節活性對于它們的保護機制而言與直接抗菌活性一樣重要,甚至更重要。本文主要就這類肽的免疫調節活性及它們在抗感染領域的應用前景作一綜述。
內毒素是革蘭氏陰性細菌外膜的主要分子組分脂多糖(lipopolysaccharide,LPS),在細菌外圍作為一種物理屏障為其提供保護。內毒素能被免疫系統識別作為檢測細菌病原體入侵的一個標志,是炎性反應發展的原因,在極端情況下會導致內毒素性休克。不同來源的抗菌肽,例如來自昆蟲的天蠶抗菌肽-蜂毒肽雜合肽CEMA[16]、人抗菌肽LL-37(human antibacterial peptide LL-37,LL-37)[17]、牛抗菌肽BMAP-27(bovine antimicrobial peptides BMAP-27,BMAP-27)及小分子的合成肽[18]能顯著降低內毒素誘導的炎癥反應,并且可以預防內毒素性休克[2, 13]。因此,研究者推測這些肽顯示出的抗內毒素活性在不同物種之間可能是守恒的。
抗菌肽在炎癥反應的微妙平衡和調節中發揮著重要作用,它們會抑制內毒素誘導的促炎基因表達(例如內毒素誘導的NF-κB亞基核易位)和炎癥介質蛋白的分泌(例如腫瘤壞死因子(tumor necrosis factor,TNF-α);白細胞介素-6(interleukin-6,IL-6)和一氧化氮(NO),同時維持其他促炎反應(例如幾種趨化因子的產生和釋放),導致促炎癥反應的整體選擇性抑制[2, 16, 19]。例如,人抗菌肽LL-37在各種哺乳動物體內能選擇性地抑制由革蘭氏陰性菌細胞壁特有成分LPS及其他Toll樣受體(toll like receptors,TLRs)激動劑(例如革蘭氏陽性特有的脂磷壁酸)引起的促炎性反應[16-17, 20 ]。另一方面,當用一種來源于鱟的抗LPS因子的合成肽預防性給藥時能顯著增加小鼠內毒素休克模型存活率,顯然這種肽是通過一種與LPS直接結合無關的方式調節細胞因子的表達[21]。通過對抗菌肽與LPS的相互作用進一步研究,提出了2種作用機制:①抗菌肽直接結合于LPS,使其無法與脂多糖結合蛋白(lipopolysaccharide-binding protein,LBP)結合,因此無法將其傳送到其初級受體CD14[22]。②通過調節內毒素誘導的TLRs到核因子-κB(nuclear factor-κB,NF-κB)通路的信號傳遞。目前研究表明,這些肽通過多方面機制經由多點干預起保護作用[16, 19, 23, 24]。根據抗菌肽的總體抗內毒素效應可以推測,它們不僅能在致病菌感染中抑制炎癥,而且可能在維持內環境的穩定中發揮至關重要的作用。
抗菌肽能選擇性地上調趨化因子和細胞因子的產生,召集單核細胞、巨噬細胞及嗜中性粒細胞到感染部位發揮保護作用[7, 9, 13]。細菌入侵的同時,受感染部位的局部組織細胞會分泌趨化因子吸引包括中性粒細胞在內的其他免疫效應細胞,導致抗菌肽的釋放量增加[25]。分泌的抗菌肽又可以反過來直接或間接地促進效應細胞的召集,如嗜中性粒細胞、單核細胞/巨噬細胞、未成熟的樹突細胞和T細胞。例如,LL-37和IL-1β一起作用誘導外周血單個核細胞合成趨化物如單核細胞趨化蛋白1(monocyte chemotactic protein 1,MCP-1) 和單核細胞趨化蛋白3(monocyte chemotactic protein 3,MCP-3)[26]。此外,LL-37是中性粒細胞、單核細胞、T淋巴細胞及肥大細胞的一種趨化物[27]。另外,小鼠β-防御素(β-defensin,HBD)和HBD-123是未成熟樹突狀細胞和記憶T細胞的趨化物,與細胞內的CCR6相互作用[28]。因此,抗菌肽的一個重要特性是它們能有選擇性地誘導基因表達和產生趨化因子或細胞因子,這種能力對免疫效應功能至關重要。
此外,抗菌肽通過趨化活性促進傷口愈合有助于緩解損傷或感染[3]。LL-37在表皮細胞再生和血管再生過程中具有重要的作用,可直接作用于上皮細胞促進細胞增殖和血管樣結構形成[29]。LL-37通過反式激活表皮生長因子受體誘導角化細胞發生顯著的遷移[30]。在小鼠體內,通過局部使用LL-37的合成重組肽P-LL-37可治療由地塞米松誘導損傷的血管形成恢復[31]。LL-37 和HNP1-3通過與表皮生長因子相互作用和激活細胞外MAPK通路,有助于呼吸道上皮的愈合[32-33]。HNP-1作用于成纖維細胞能增加I型膠原蛋白的表達及下調間質膠原酶的合成[34]。此外,HBD-2和HBD-3能通過誘導細胞因子的合成激活角化細胞并促進其遷移和增殖[35]。
抗菌肽是先天免疫系統的一部分,在感染或炎癥中許多的肽的表達量增加,例如被細菌感染期間在不同類型的細胞中人β-防御素2的表達被上調,并且用不同的細菌組分刺激后能夠激活Toll樣受體到NF-κB通路,而人抗菌肽LL-37似乎僅通過內源性炎癥分子上調[14, 36]。在轉基因小鼠模型中增加這些肽的表達,對細菌感染的抵抗力隨之增強[37]。與此相反,對小鼠模型的體內研究結果表明,在這些防御肽缺失的情況下將導致感染的易感性增加[1]。同樣地,如果人體內缺乏或低表達某些防御肽也會導致對感染的易感性增加。例如,特應性皮炎與防御素和抗菌肽LL-37的缺乏有關[15]。通過利用實驗系統模擬生理學相關條件以及在動物模型中體內感染的研究[1, 38],充分證明了抗菌肽能夠抑制或清除細菌感染和調節相關炎癥,在宿主免疫系統中發揮著重要作用。
抗菌肽不僅能抑制某些促炎癥反應,同時也能增強某些其他免疫反應(通常認為是促炎性的),這有利于將細胞召集到感染部位并影響隨后的免疫反應。例如,LL-37作為促炎和抗炎抗菌肽在調節調節炎癥方面具有雙重作用,在保持其動態平衡中起重要作用。LL-37在LPS和IFN-γ極化的小鼠骨髓巨噬細胞中能下調TNF-α和NO等炎性因子產生[39]。相反,LL-37和HBD通過召集、激活和脫粒肥大細胞促進炎癥[40],例如LL-37和HBD-4誘導促炎細胞因子IL-18和IL-31的合成[41-42]。抗菌肽能誘導產生一些細胞因子和趨化因子或作為某些類型細胞(例如單核細胞、嗜中性粒細胞、T細胞和嗜酸性粒細胞)定向趨化的趨化因子,影響未成熟樹突狀細胞的細胞分化[13, 43]。由此可見,抗菌肽對免疫反應中功能的調節或調控具有明顯的矛盾性。本綜述認為這些肽在炎癥環境中表現出的這種特性有利于選擇性地抑制或促進炎癥反應在宿主中的綜合平衡,從而產生一種適度、純粹的抗感染反應。
此外,抗菌肽還能影其他免疫調節功能,包括細胞分化和增殖,通過抑制細胞凋亡延長嗜中性粒細胞的壽命,肥大細胞的活化和脫粒,傷口修復,刺激血管再生,以及增強樹突狀細胞攝取、加工處理和遞呈抗原的能力[44-47]。在炎癥環境下,這些肽顯示能與其他免疫效應分子(如粒細胞巨噬細胞刺激因子或白介素-1β)協同作用。因此,由抗菌肽所介導的免疫調節功能并不是獨立于其他免疫反應,而是形成一個復雜的免疫介質網絡和下游信號通路,這也是防御機制整體有效運作所必需的。在與抗菌肽反應過程中,調節下游先天免疫基因功能的關鍵信號通路不同程度地被激活和調節。例如,在肥大細胞、角質形成細胞和單核細胞中,人抗菌肽LL-37和β-防御素可以激活絲裂原活化蛋白激酶p38和細胞外信號調節激酶-1/2[41, 46]。此外,在角質形成細胞中LL-37通過STAT3信號通路反式激活表皮生長因子受體[47]。這些結果表明,抗菌肽可以直接影響轉錄因子的激活,參與先天免疫基因的調節和表達,符合功能基因組學研究[ 16-17]。
先天免疫介質在淋巴細胞特定的發展過程中起著指導性的作用,能觸發適應性免疫應答[48]。先天免疫的細胞組分被迅速召集到致病菌侵染的部位,誘導產生級聯免疫介質,包括細胞因子,趨化因子和抗菌肽。專職的先天性免疫細胞,包括作為專職抗原呈遞細胞的未成熟樹突狀細胞,被免疫介質直接激活,隨后導致特異性免疫增強型細胞因子及T和B淋巴細胞亞群的激活,導致抗原適應性免疫應答的開始和發展。各種各樣的抗菌肽,例如人α-防御素HNP-1和HNP-2、豬抗菌肽PR-39及人抗菌肽LL-37等對未成熟樹突狀細胞和T細胞有趨化作用[49-50],在這類細胞中它們作為佐劑通過與不同的受體相互作用影響抗原適應性免疫的幅度和分化[51]。
抗菌肽通過與先天免疫橋接能調節適應性免疫反應或與適應性免疫細胞直接相互作用。例如,LL-37不僅能召集肥大細胞,而且能上調toll樣受體-4的表達。這種肽的表達是通過感染信號引起,提高了肥大細胞識別入侵的細菌的能力。此外,用LL-37和LPS共刺激肥大細胞可以下調Th2細胞因子分化亞群的表達[52]。在體外,LL-37通過上調這些細胞的內吞能力可以促進樹突狀細胞分化以及刺激Th1細胞因子分化亞群的分泌和Th1反應[53]。這些研究證據表明抗菌肽是在先天和適應性免疫反應交界面之間起作用的分子[43],這些肽作為信號影響適應性免疫反應的起始、極化和放大。
目前,市面上所有的常規抗生素幾乎都出現了相應的耐藥性致病菌,致病菌的耐藥性問題日益嚴重地威脅著人們的健康,因此,亟需尋找一種新型的抗感染藥物作為抗生素的替代治療策略。抗菌肽廣泛的生物學活性顯示了其在感染醫學上良好的應用前景。20世紀80年代以來,隨著人們對抗菌肽研究的日益深入,對于這些分子潛在的應用前景也已發生改變。前期,它們主要被考慮作為天然抗生素,潛在用途僅限于感染性疾病的治療。現在,抗菌肽不僅是具有廣譜作用機制的天然廣譜抗生素,而且還具有廣譜的生理功能,為人類開啟了一個廣闊的全新應用領域。目前,已有多種多肽抗生素進入到了臨床前試驗階段,其中人胚肺成纖維細胞1-1(human lung fibroblast,HLF1-1)已進入II期臨床試驗階段[54],DiaPep277已進入Ⅲ期臨床試驗階段,而達托霉素、Glutoxim(NOV-002)和恩夫韋地(Enfuvirtide)已經上市[55]。另外,根據陽離子宿主防御肽的生物膜滲透能力,可考慮通過工業生物技術設計新型細胞內的藥物。
在體內抗菌肽不直接針對病原體,而是選擇性調節的宿主免疫系統,產生耐藥性的機率非常低[2, 56],為治療感染提供了一種新方法。本綜述認為根據抗菌肽呈現的選擇性免疫調節生物活性至少可以通過3種途徑對它們進行潛在的開發利用。①抗菌肽不是直接殺菌,而是通過選擇性的免疫調節特性防治感染,據此可被開發作為有效的治療藥物預防多藥耐藥細菌及新病原體感染。②抗菌肽具有強效的抗炎特性,能選擇性地調節或維持某些宿主免疫應答,據此它們可以被開發用來應對急性、誘發型或慢性炎性病癥。③抗菌肽影響適應性應答的起始和分化[43, 53],因此它們有可能被開發作為有潛力的佐劑。在上述的所有方法中,抗肽既可以作為獨立的療法,又能與現有的藥物聯合使用。
然而,要將抗菌肽作為免疫調節藥物應用于臨床感染治療仍存在一定的局限性,例如在未知的藥效動力學和毒理學方面,包括潛在的免疫毒性,以及高昂的商品成本。因此,關于如何增強其結構穩定性,限制相關細胞毒性成分,提高療效及降低商品成本等問題成為熱點和難點。相信隨著對抗菌肽構效關系及藥動學性質的深入研究,在此基礎上通過對抗菌肽進行合理的設計和人工改造,不僅能夠有效解決傳統抗生素日益嚴重的耐藥問題,更能以其獨特的免疫調節功能,為抗感染治療提供新的方法,終將對人類的健康事業產生深遠影響。
[1] Lee JK,Park SC, Hahm KS, et al. A helix-PXXP-helix peptide with antibacterial activity without cytotoxicity against MDRPA-infected mice[J]. Biomaterials, 2014, 35(3):1025-1039.
[2] Li SA, XiangY, Wang YJ, et al. Naturally occurring Antimicrobial peptide OH-CATH30 selectively regulates the innate response to protect against sepsis [J]. J Med Chem, 2013, 56(22):9136-9145.
[3]Chereddy KK, Her CH, Comune M, et al. PLGA nanoparticles loaded with host defense peptide LL37 promote wound healing [J]. J Control Release, 2014(194):138-147.
[4]L?fgren SE, Miletti LC, Steindel M, et al. Trypanocidal and leishmanicidal activities of different antimicrobial peptides (AMPs) isolated from aquatic animals [J]. Exp Parasitol, 2008, 118(2):197-202.
[5]Deng X, Qiu Q, Ma K, et al. Aliphatic acid-conjugated antimicrobial peptides--potential agents with anti-tumor, multidrug resistance-reversing activity and enhanced stability [J]. Org Biomol Chem, 2015, 13(28):7673-7680.
[6]Hsu JC1, Lin LC, Tzen JT, et al. Pardaxin-induced apoptosis enhances antitumor activity in HeLa cells [J]. Peptides, 2011, 32(6):1110-1116.
[7]Narayana JL, Huang HN, Wu CJ, et al. Epinecidin-1 antimicrobial activity: In vitro membrane lysis and In vivo efficacy against Helicobacter pylori infection in a mouse model [J]. Biomaterials, 2015(61):41-51.
[8]Lee CC, Sun Y, Qian S, et al. Transmembrane pores formed by human antimicrobial peptide LL-37 [J].Biophys J,2011,100(7):1688-1696.
[9]Xhindoli D, Pacor S, Benincasa M, et al. The human cathelicidin LL-37 - A pore-forming antibacterial peptide and host-cell modulator [J]. Biochim Biophys Acta, 2015, pii: S0005-2736(15)00368-5.
[10]Kobayashi S, Chikushi A, Tougu S, et al. Membrane translocation mechanism of the antimicrobial peptide buforin 2 [J]. Biochemistry, 2004, 43(49):15610-15616.
[11]Rodriguez CA, Agudelo M, Zuluaga AF, et al. Generic vancomycin enriches resistant subpopulations of Staphylococcus aureus after exposure in a neutropenic mouse thigh infection model [J]. Antimicrob Agents Chemother, 2012, 56(1):243-247.
[12]Sparr C, Purkayastha N, Kolesinska B, et al. Improved efficacy of fosmidomycin against Plasmodium and Mycobacterium species by combination with the cell-penetrating peptide octaarginine [J]. Antimicrob Agents Chemother, 2013, 57(10):4689-4698.
[13]Bowdish DM, Davidson DJ, Lau YE, et al. Impact of LL-37 on anti-infective immunity [J]. J Leukoc Biol, 2005, 77(4):451-459.
[14]Proud D, Sanders SP, Wiehler S. Human rhinovirus infection induces airway epithelial cell production of human beta-defensin 2 both in vitro and in vivo [J]. J Immunol, 2004, 172(7):4637-4645.
[15]Nizet V, Ohtake T, Lauth X, et al. Innate antimicrobial peptide protects the skin from invasive bacterial infection [J]. Nature, 2001, 414(6862):454-457.
[16]Mookherjee N, Brown KL, Bowdish DM, et al. Modulation of the TLR-mediated inflam-matory response by the endogenous human host defense peptide LL-37 [J]. J Immunol, 2006, 176(4):2455-2464.
[17]Bedran TB, Mayer MP, Spolidorio DP, et al. Synergistic anti-inflammatory activity of the antimicrobial peptides human beta-defensin-3 (hBD-3) and cathelicidin (LL-37) in a three-dimensional co-culture model of gingival epithelial cells and fibroblasts [J]. PLoS One, 2014, 9(9):e106766.
[18]Song D, Zong X, Zhang H, et al. Antimicrobial peptide Cathelicidin-BF prevents intestinal barrier dysfunction in a mouse model of endotoxemia [J]. Int Immunopharmacol, 2015, 25(1):141-147.
[19]Sharp CR, DeClue AE, Haak CE, et al. Evaluation of the anti-endotoxin effects of polymyxin B in a feline model of endotoxemia [J]. J Feline Med Surg, 2010, 12(4):278-285.
[20]Qian L, Chen W, Sun W, et al. Antimicrobial peptide LL-37 along with peptidoglycan drive monocyte polarization toward CD14(high)CD16(+) subset and may play a crucial role in the pathogenesis of psoriasis guttata [J]. Am J Transl Res, 2015, 7(6):1081-1094.
[21]Vallespi MG, Alvarez-Obregón JC, Rodriguez-Alonso I, et al. A Limulus anti-LPS factor-derived peptide modulates cytokine gene expression and promotes resolution of bacterial acute infection in mice[J].Int Immunopharmacol, 2003, 3(2):247-256.
[22]Liu Y, Ni B, Ren JD, et al. Cyclic Limulus anti-lipopolysaccharide (LPS) factor-derived peptide CLP-19 antagonizes LPS function by blocking binding to LPS binding protein [J]. Biol Pharm Bull, 2011, 34(11):1678-1683.
[23]Scott MG, Rosenberger CM, Gold MR, et al. An alpha-helical cationic antimicrobial peptide selectively modulates macrophage responses to lipopolysaccharide and directly alters macrophage gene expression [J]. J Immunol, 2000, 165(6):3358-3365.
[24]Wensink AC, Kemp V, Fermie J, et al. Granzyme K synergistically potentiates LPS-induced cytokine responses in human monocytes [J]. Proc Natl Acad Sci U S A, 2014, 111(16):5974-5979.
[25]Sansonetti PJ, Phalipon A. M cells as ports of entry for enteroinvasive pathogens: mechanisms of interaction, consequences for the disease process [J]. Semin Immunol, 1999, 11(3):193-203.
[26]Yu J, Mookherjee N, Wee K, et al. Host defense peptide LL-37, in synergy with inflammatory mediator IL-1beta, augments immune responses by multiple pathways [J]. J Immunol, 2007, 179(11):7684-7691.
[27]Subramanian H, Gupta K, Guo Q, et al. Mas-related gene X2 (MrgX2) is a novel G protein-coupled receptor for the antimicrobial peptide LL-37 in human mast cells: resistance to receptor phosphorylation, desensitization, and internalization [J]. J Biol Chem, 2011, 286(52):44739-44749.
[28]Yang D, Chen Q, Chertov O, et al. Human neutrophil defensins selectively chemoattract naive T and immature dendritic cells [J]. J Leukoc Biol, 2000, 68(1):9-14.
[29]Tomioka H, Nakagami H, Tenma A, et al. Novel anti-microbial peptide SR-0379 accelerates wound healing via the PI3 kinase/Akt/mTOR pathway [J]. PLoS One, 2014, 9(3):e92597.
[30]Yin J, Yu FS. LL-37 via EGFR transactivation to promote high glucose-attenuated epithelial wound healing in organ-cultured corneas [J]. Invest Ophthalmol Vis Sci, 2010, 51(4):1891-1897.
[31]Ramos R, Silva JP, Rodrigues AC, et al. Wound healing activity of the human antimicrobial peptide LL37 [J]. Peptides, 2011, 32(7):1469-1476.
[32]Aarbiou J, Verhoosel RM, Van Wetering S, et al. Neutrophil defensins enhance lung epithelial wound closure and mucin gene expression in vitro [J]. Am J Respir Cell Mol Biol, 2004, 30(2):193-201.
[33]Shaykhiev R, Beisswenger C, K?ndler K, et al. Human endogenous antibiotic LL-37 stimulates airway epithelial cell proliferation and wound closure [J]. Am J Physiol Lung Cell Mol Physiol, 2005, 289(5):L842-848.
[34]Oono T, Shirafuji Y, Huh WK, et al. Effects of human neutrophil peptide-1 on the expression of interstitial collagenase and type I collagen in human dermal fibroblasts [J]. Arch Dermatol Res, 2002, 294(4):185-189.
[35]Niyonsaba F, Ushio H, Nakano N, et al. Antimicrobial peptides human beta-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines [J]. J Invest Dermatol, 2007, 127(3):594-604.
[36]Stroinigg N, Srivastava MD. Modulation of toll-like receptor 7 and LL-37 expression in colon and breast epithelial cells by human beta-defensin-2 [J]. Allergy Asthma Proc, 2005, 26(4):299-309.
[37]Salzman NH1, Ghosh D, Huttner KM, et al.Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin[J]. Nature, 2003, 422(6931):522-526.
[38]Han F, Zhang H, Xia X, et al. Porcine β-defensin 2 attenuates inflammation and mucosal lesions in dextran sodium sulfate-induced colitis [J]. J Immunol, 2015, 194(4):1882-1893.
[39]Brown KL, Poon GF, Birkenhead D, et al. Host defense peptide LL-37 selectively reduces proinflammatory macrophage responses [J]. J Immunol, 2011, 186(9):5497-5505.
[40]Niyonsaba F, Hirata M, Ogawa H, et al. Epithelial cell-derived antibacterial peptides human beta-defensins and cathelicidin: multifunctional activities on mast cells [J]. Curr Drug Targets Inflamm Allergy, 2003, 2(3):224-231.
[41]Niyonsaba F, Ushio H, Nagaoka I, et al. The human beta-defensins (-1, -2, -3, -4) and cathelicidin LL-37 induce IL-18 secretion through p38 and ERK MAPK activation in primary human keratinocytes [J]. J Immunol, 2005, 175(3):1776-1784.
[42]Niyonsaba F, Ushio H, Hara M, et al. Antimicrobial peptides human beta-defensins and cathelicidin LL-37 induce the secretion of a pruritogenic cytokine IL-31 by human mast cells [J]. J Immunol, 2010, 184(7):3526-3534.
[43]Bowdish DM, Davidson DJ, Hancock RE. A re-evaluation of the role of host defence peptides in mammalian immunity [J]. Curr Protein Pept Sci, 2005, 6(1):35-51.
[44]Davidson DJ, Currie AJ, Reid GS, et al. The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization [J]. J Immunol, 2004, 172(2):1146-1156.
[45]Nagaoka I, Tamura H, Hirata M. An antimicrobial cathelicidin peptide, human CAP18/LL-37, suppresses neutrophil apoptosis via the activation of formyl-peptide receptor-like 1 and P2X7 [J]. J Immunol, 2006, 176(5):3044-3052.
[46]Chen X, Niyonsaba F, Ushio H, et al. Human cathelicidin LL-37 increases vascular permeability in the skin via mast cell activation, and phosphorylates MAP kinases p38 and ERK in mast cells [J]. J Dermatol Sci, 2006, 43(1):63-66.
[47]Tokumaru S, Sayama K, Shirakata Y, et al. Induction of keratinocyte migration via transactivation of the epidermal growth factor receptor by the antimicrobial peptide LL-37 [J]. J Immunol, 2005, 175(7):4662-4668.
[48]Fearon, DT and Locksley RM. The instructive role of innate immunity in the acquired immune response [J]. Science, 1996, 272(5258):50-53.
[49]Chertov O, Michiel DF, Xu L, et al. Identification of defensin-1, defensin-2, and CAP37/ azurocidin as T-cell chemoattractant proteins released from interleukin-8-stimulated neutrophils [J]. J Biol Chem, 1996, 271(6):2935-2940.
[50]Veldhuizen EJ, Schneider VA, Agustiandari H, et al. Antimicrobial and immunomodulatory activities of PR-39 derived peptides [J]. PLoS One, 2014, 9(4):e95939.
[51]Vargas P, Chabaud M, Thiam HR, et al. Study of dendritic cell migration using micro-fabrication [J]. J Immunol Methods, 2015, pii: S0022-1759(15)30071-5.
[52]Yoshioka M, Fukuishi N, Kubo Y, et al. Human cathelicidin CAP18/LL-37 changes mast cell function toward innate immunity [J]. Biol Pharm Bull, 2008, 31(2):212-216.
[53]Davidson DJ, Currie AJ, Reid GS, et al. The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization [J]. J Immunol,2004,172(2):1146-1156.
[54]Knlse T, Kristensen H. Using antimicrobial host defense peptides as anti-infective and immunomodulatory agents [J].Expert RevAnti Infect Ther, 2008, 6(6): 887-895.
[55]Makinson A, Reynes J.The fusion inhibitor enfuvinide in recent antiretroviral strategies [J].Curr Opin HIV AIDS, 2009, 4(2): 150-158.
[56]Dong XQ, Zhang DM, Chen YK, et al. Effects of antimicrobial peptides (AMPs) on blood biochemical parameters, antioxidase activity, and immune function in the common carp (Cyprinus carpio)[J]. Fish Shellfish Immunol, 2015, 47(1):429-434.
(編校:王冬梅)
Potential of antimicrobial peptides as novel anti-infective the rapeutics and application prospect
ZHANG Dong-dong, SHANG De-jingΔ
(Faculty of Life Science, Liaoning Normal University, Dalian 116081, China)
Antimicrobial peptides are conserved components of innate immune response present among all classes of life. These peptides are potent, broad spectrum antimicrobial agents with potential as novel therapeutics. Also, antimicrobial peptides have the ability to modulate immunity and its selective modulation is a novel anti-infective strategy. Antimicrobial peptides represent lead molecules that boost innate immune responses and selectively modulate pathogen-induced inflammatory responses. This review discusss the mechanisms of antimicrobial peptides as innate immune regulators, their role in the interface of innate and adaptive immunity, and their potential application as anti-infective and immunomodulatory therapeutics and application prospect.
antimicrobial peptides; immunomodulatory; anti-infective
張東東,男,碩士在讀,研究方向:生物化學與分子生物學,E-mail: dzs-087@163.com;尚德靜,通信作者,女,博士,教授,博士生導師,研究方向:生物化學與分子生物學,E-mail: djshang@lnnu.edu.cn。
R96
A
1005-1678(2016)01-0178-05