劉開偉,王愛國,孫道勝,陳 偉
(安徽建筑大學先進建筑材料安徽省重點實驗室,合肥 230022)
?
硫酸鹽侵蝕下鈣礬石的形成和膨脹機理研究現(xiàn)狀
劉開偉,王愛國,孫道勝,陳 偉
(安徽建筑大學先進建筑材料安徽省重點實驗室,合肥 230022)
鈣礬石是水泥混凝土硫酸鹽侵蝕過程中的重要產(chǎn)物之一,鈣礬石的形成可能會引起混凝土膨脹、開裂,本文在討論水泥混凝土中鈣礬石的形成和形貌的基礎上,從鈣礬石的形成環(huán)境-反應機理-形貌-膨脹機理出發(fā)綜述了不同反應機制下形成的鈣礬石對應的膨脹性能及鈣礬石型硫酸鹽侵蝕的膨脹機理,最后對鈣礬石型硫酸鹽侵蝕現(xiàn)狀進行了總結(jié)。
硫酸鹽侵蝕; 鈣礬石形成; 膨脹機理
硫酸鹽侵蝕是引起混凝土結(jié)構(gòu)在服役環(huán)境中過早劣化的重要原因之一,世界上很多國家都存在相關的破壞工程[1-2]。長期以來,國內(nèi)外學者對硫酸鹽侵蝕進行了大量的研究,取得了豐碩的研究成果,從眾多的工程實例和文獻可以看到,鈣礬石型硫酸鹽侵蝕一直是關注和研究的重點[3-6]。但是硫酸鹽侵蝕的多樣性和復雜性使得鈣礬石型硫酸鹽侵蝕的很多問題仍不清楚[7-8],如裂縫處存在的鈣礬石是引起開裂的原因還只是在這些地方有足夠的空間析晶、長大?因此,在實際工程中盲目地將混凝土中出現(xiàn)的裂縫與觀察到的鈣礬石直接聯(lián)系在一起,可能會忽視實際工程中凍融、堿集料反應等真正引起混凝土開裂的因素,而錯誤地將只是在已經(jīng)產(chǎn)生的裂縫處析晶的鈣礬石作為破壞原因。針對鈣礬石形成與混凝土膨脹開裂之間存在的一些誤區(qū),本文綜述了鈣礬石的形成機制及膨脹機理,展望了鈣礬石型硫酸鹽侵蝕研究中仍然存在的問題。

(1)
(2)
但是關于鈣礬石的形成機理,一直存在溶解沉淀(Through-solution)和固相反應(也稱為局部化學反應,Topochemical)之爭[13]。
2.1 溶解沉淀反應(Through-solution)
(3)
[Al(OH)6]3-+3Ca2++12H2O→[Ca3Al(OH)6·12H2O]3+
(4)
(5)

2.2 固相反應(Topochemical)

圖1 不同反應機制下形成的鈣礬石[22](a)固相反應形成的鈣礬石;(b)溶液反應下形成的鈣礬石Fig.1 Ettringite under different reaction mechanism[22]



圖2 不同晶體尺寸的鈣礬石Fig.2 Ettringite of different crystal size
混凝土的內(nèi)部環(huán)境決定鈣礬石的形成機制,也會影響鈣礬石的形貌。通過對鋁相礦物水化的研究,Mehta[33-34]指出鈣礬石有兩種形貌,且不同形貌的形成取決于鈣礬石的生成環(huán)境。一種鈣礬石為凝膠狀,長1~2 μm,厚0.1~0.2 μm,在氫氧根離子濃度較高的條件下容易生成,Mehta[35-36]認為受硫酸鹽侵蝕引起膨脹的鈣礬石都屬于這一類。另一種是10~100 μm長,幾個微米厚的晶體,這種鈣礬石通常是在低pH值條件下形成,在堿度較高的硅酸鹽水泥體系中,這種鈣礬石只會在具有較大的空間時才會可能形成,如高水灰比的水泥漿體或者在早期水化的時候。Mehta[37]認為這種晶體尺寸的鈣礬石不會引起膨脹,還會對強度有所貢獻。劉開偉等[28]利用掃描電鏡也觀察到兩種不同晶體尺寸的鈣礬石,一類為2~5 μm的針狀鈣礬石,另一類為50 μm左右長的鈣礬石晶體,如圖2所示,并進一步指出2~5 μm的針狀鈣礬石主要通過局部化學反應形成并引起混凝土膨脹,而大晶體尺寸的鈣礬石主要通過溶液沉淀在孔洞或界面處沉積,對膨脹無明顯貢獻。
造成鈣礬石形成機制爭論的主要原因其實源于對水泥基材料膨脹機理的分歧,目前關于膨脹機理的爭論在于兩點:第一,硫酸鹽侵蝕下混凝土中鈣礬石的膨脹機理;第二,是不是所形成的鈣礬石均是引起混凝土膨脹的原因?傳統(tǒng)關于鈣礬石膨脹的機理主要有固相體積增加、局部化學反應、吸水腫脹和結(jié)晶壓四個反應理論[38],實際上根據(jù)產(chǎn)生的膨脹力不同,目前國內(nèi)外主流的觀點為晶體結(jié)晶壓和吸水腫脹壓兩種膨脹機理。
4.1 吸水腫脹理論

4.2 結(jié)晶壓理論
當溶液中鈣釩石過飽和后,鈣釩石通過溶液反應在孔溶液中形成,主要通過成核和晶體生長兩個階段。Scherer[42-43]指出,當滿足以下兩個條件的時候,鈣釩石的形成和生長的結(jié)晶壓會引起水泥基材料的膨脹。首先,晶體必須在過飽和的溶液中結(jié)晶生長,溶液的過飽和度提供能量,如式(6)所示。然后晶體在一個相對封閉的環(huán)境中生長。根據(jù)結(jié)晶壓的公式,溶液的過飽和度對結(jié)晶壓的大小有著至關重要的影響[44]。
P=(RT/V)·ln(IAP/Ksp)
(6)
其中P是壓力,R是氣體常數(shù),T是絕對溫度,V是晶體摩爾體積,IAP是離子活度積,Ksp是晶體的溶解度平衡常數(shù),鈣釩石的IAP見式(7):
(7)
通過對鈣礬石形成的論述,可知鈣礬石可為溶液反應形成和局部化學反應形成。溶液形成的鈣礬石一般多為溶解-結(jié)晶形成,通常在形成勢壘較小的大裂縫、孔洞中形成,導致該類鈣礬石所處環(huán)境難以滿足結(jié)晶壓所需要的相對狹小、封閉的環(huán)境,這也是Taylor[45]、Mather[46]、鄧敏[25]、Kalousek[47]等對該理論持有異議的主要原因,因為按照該理論應該是鈣礬石填滿整個孔洞才會引起混凝土膨脹,而實際觀察到的鈣礬石并非需要填充完孔隙后才會引起膨脹。若鈣礬石是通過局部化學反應形成,則鈣礬石的形成位置只能在含鋁相的固相表面或其附近,在CH飽和或者過飽和環(huán)境下形成細小的鈣礬石晶體,而鈣礬石的生長環(huán)境則受到周圍其他固相的顆粒的限制,則鈣礬石的結(jié)晶壓引起混凝土的膨脹。可見,通過局部化學反應形成的鈣礬石產(chǎn)生結(jié)晶壓,是引起混凝土膨脹的主要原因,而通過溶液形成的鈣礬石結(jié)晶壓因為周圍空間過大難以引起混凝土的膨脹。很多學者的研究結(jié)果表明鈣礬石的含量與混凝土的膨脹并無直接的關系,極有可能引起混凝土的膨脹的只是部分鈣礬石,而通過溶液反應形成的大量鈣礬石對膨脹并無明顯的貢獻。
混凝土硫酸鹽侵蝕的機理比較復雜,探明鈣礬石的形成和膨脹機理將有利于正確判斷工程的破壞原因,采取相應的有效措施。總體而言,混凝土在硫酸鹽侵蝕過程中鈣礬石的形成機制取決于混凝土的內(nèi)部環(huán)境。在硫酸鹽腐蝕早期,氫氧化鈣飽和,鈣礬石通過固相反應形成尺寸較小的鈣礬石晶體(1~5 μm),其中在限制空間產(chǎn)生的晶體結(jié)晶壓會導致水泥基材料膨脹;在硫酸鹽腐蝕后期,氫氧化鈣消耗,鈣礬石主要通過溶解沉淀反應重結(jié)晶形成,鈣礬石為尺寸較大的晶體,不會導致水泥基材料膨脹。
[1] 唐明述.中國水泥混凝土工業(yè)發(fā)展現(xiàn)狀與展望[J].東南大學學報:自然科學版,2006,36(S2):1-6.
[2] Romer M,Holzer L,Pfiffner M.Swiss tunnel structures: concrete damage by formation of thaumasite[J].CementandConcreteComposites,2003,25(8):1111-1117.
[3] Hime W G,Mather B."Sulfate attack,"or is it?[J].CementandConcreteResearch,1999,29(5):789-791.
[4] Leemann A,Loser R.Analysis of concrete in a vertical ventilation shaft exposed to sulfate-containing groundwater for 45 years[J].CementandConcreteComposites,2011,33(1):74-83.
[5] Meier M R,Rinkenburger A,Plank J.Impact of different types of olycarboxylate superplasticisers on spontaneous crystallisation of ettringite[J].AdvancesinCementResearch,2016:1-10.
[6] 邢志水.工程混凝土硫酸鹽侵蝕破壞調(diào)查與分析[D].南京:南京工業(yè)大學,2012.
[7] Santhanam M,Cohen M D,Olek J.Sulfate attack research-whither now?[J].CementandConcreteResearch,2001,31(6):845-851.
[8] Neville A.The confused world of sulfate attack on concrete[J].CementandConcreteResearch,2004,34(8):1275-1296.
[9] Yang D,Guo R.Experimental study on modulus and hardness of ettringite[J].ExperimentalTechniques,2014,38(1):6-12.
[10] 馬惠珠,鄧 敏,朱建強.混凝土中鈣礬石的重結(jié)晶[J].材料導報,2007,21(S1):353-355.
[11] 席耀忠.二次鈣礬石形成和膨脹混凝土的耐久性[J].混凝土與水泥制品,2003,(2):5-9.
[12] Taylor H F W,Famy C,Scrivener K L.Delayed ettringite formation[J].CementandConcreteResearch,2001,31(5):683-693.
[13] Skalny J,Marchand J,Odler I.Sulfate attack on concrete[M].London:Spon Press,2002.
[14] Damidot D,Glasser F P.Thermodynamic investigation of the CaO-Al2O3-CaSO4-CaCO3-H2O closed system at 25 ℃ and the influence of Na2O[J].AdvancesinCementResearch,1995,7(27):129-134.
[15] 石云興,王澤云,吳 東,等.鈣礬石的形成條件與穩(wěn)定性[J].混凝土,2000,(8):52-54.
[16] 龍世宗,劉 晨,鄔燕蓉.NaOH和Ca(OH)2對C3A-CaSO4·2H2O-H2O系統(tǒng)早期水化影響的研究[J].硅酸鹽學報,1997,(6):635-642.
[17] 彭家惠,樓宗漢.鈣礬石形成機理的研究[J].硅酸鹽學報,2000,28(6):511-515.
[18] Cohen M.Modeling of expansive cements[J].CementandConcreteResearch,1983,13(4):519-528.
[19] Hansen W.A discussion of the paper "scanning electron micrographic studies of ettringite formation," by PK Mehta[J].CementandConcreteResearch,1976,6(4):595-596.
[20] Evju C,Hansen S.The kinetics of ettringite formation and dilatation in a blended cement with β-hemihydrate and anhydrite as calcium sulfate[J].CementandConcreteResearch,2005,35(12):2310-2321.
[21] Odler I,Colan-Subauste J.Investigations on cement expansion associated with ettringite formation[J].CementandConcreteResearch,1999,29(5):731-735.
[22] Silva D A,Monteiro P J M.Early formation of ettringite in tricalcium aluminate-calcium hydroxide-gypsum dispersions[J].JournaloftheAmericanCeramicSociety,2007,90(2):614-617.
[23] 鄧德華,肖 佳,元 強,等.試論鈣礬石型硫酸鹽侵蝕與混凝土劣化的機理[C].中國土木工程學會,混凝土工程耐久性研究和應用研討會,2006.
[24] Chabrelie A.Mechanisms of degradation of concrete by external sulfate ions under laboratory and field conditions[D].Lausanne:EPFL,Switzerland,2010.
[25] Deng M,Tang M S.Formation and expansion of ettringite crystals[J].CementandConcreteResearch,1994,24(1):119-126.
[26] Alunno Rossetti V,Chiocchio G,Paolini A.Expansive properties of the mixture C4A$H12-2C$ III.Effects of temperature and restraint[J].CementandConcreteResearch,1983,13(1):23-33.
[27] Brown P,Taylor H.The role of ettringite in external sulfate attack[A].Marchand,J.Materials Science of Concrete:Sulfate Attack Mechanisms[C].American Ceramic Society,Westerville OH,1999:73-98.
[28] 劉開偉.硫酸鈉侵蝕下水泥基材料的劣化過程及機理[D].南京:南京工業(yè)大學,2014.
[29] Liu K W,Deng M,Mo L W,et al.Deterioration mechanism of Portland cement paste subjected to sodium sulfate attack[J].AdvancesinCementResearch,2015,27(8):477-486.
[30] Yu C,Sun W,Scrivener K.Mechanism of expansion of mortars immersed in sodium sulfate solutions[J].CementandConcreteResearch,2013,43:105-111.
[31] Moore A,Taylor H.Crystal structure of ettringite[J].ActaCrystallographicaSectionB:StructuralCrystallographyandCrystalChemistry,1970,26(4):386-393.
[32] Taylor H.Crystal structures of some double hydroxide minerals[J].MineralogicalMagazine,1973,39(304):377-389.
[33] Mehta P K.Mechanism of sulfate attack on portland cement concrete-Another look[J].CementandConcreteResearch,1983,13(3):401-406.
[34] Chen S S,Mehta P K.Zeta potential and surface area measurements on ettringite[J].CementandConcreteResearch,1982,12(2):257-259.
[35] Mehta P K,Klein A.Formation of ettringite by hydration of a system containing an anhydrous calcium sulfoaluminate[J].JournaloftheAmericanCeramicSociety,1965,48(8):435-436.
[36] Mehta P K,Wang S.Expansion of ettringite by water adsorption[J].CementandConcreteResearch,1982,12(1):121-122.
[37] Mehta P K,Hu F.Further evidence for expansion of ettringite by water adsorption[J].JournaloftheAmericanceramicSociety,1978,61(3):179-181.
[38] 于 誠.水泥基材料在硫酸鹽侵蝕作用下的劣化過程和機理[D].南京:東南大學,2013.
[39] Mehta P K.Mechanism of expansion associated with ettringite formation[J].CementandConcreteResearch,1973,3(1):1-6.
[40] Mehta P K.Scanning electron micrographic studies of ettringite formation[J].CementandConcreteResearch,1976,6(2):169-182.
[41] Bizzozero J,Gosselin C,Scrivener K L.Expansion mechanisms in calcium aluminate and sulfoaluminate systems with calcium sulfate[J].Cement&ConcreteResearch,2014,56(2):190-202.
[42] Scherer G W.Stress from crystallization of salt[J].CementandConcreteResearch,2004,34(9):1613-1624.
[43] Scherer G W.Crystallization in pores[J].CementandConcreteResearch,1999,29(8):1347-1358.
[44] Müllauer W,Beddoe R E,Heinz D.Sulfate attack expansion mechanisms[J].CementandConcreteResearch,2013,52:208-215.
[45] Taylor H F.Cement chemistry[M].London:Thomas Telford,1997.
[46] Mather B.A discussion of the paper "Mechanism of expansion associated with ettringite formation" by PK Mehta[J].CementandConcreteResearch,1973,3(5):651-652.
[47] Kalousek G,Benton E J.Mechanism of seawater attack on cement pastes[J].AmConcreteInstJournal&Proceedings,1970,62(2):187-192.
Recent Progress of Ettringite Formation and Its Expansion Mechanisms during Sulfate Attack
LIUKai-wei,WANGAi-guo,SUNDao-sheng,CHENWei
(Anhui Key Laboratory of Advanced Building Materials,Anhui Jianzhu University,Hefei 230022,China)
Ettringite is one of the important corrosion products in concrete during sulfate attack and its formation can cause expansion and cracking. This paper discusses the forming process, structure and morphology of ettringite in different environments during sulfate attack. As a basis for further discussions on this, the expansion characteristics and expansion mechanisms of ettringite that formed by solution or topchemical reaction are summarized according to expanding force. At last, some problems to be solved about ettringite formation during sulfate attack are also prospected in this paper.
sulfate attack;ettringite formation;expansion mechanism
國家自然科學基金(51608004,51578004);安徽省高校自然科學基金(KJ2016A818);高性能土木工程材料國家重點實驗室開放課題(2014CEM010);安徽建筑大學博士啟動基金(2015QD03)
劉開偉(1985-),男,博士,講師.主要從事高性能混凝土和建筑功能材料的研究.
王愛國,博士,副教授.
TQ173
A
1001-1625(2016)12-4014-06