999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Commutator of Marcinkiewicz Integrals Associated with Schr?dinger Operators on Variable Exponent Spaces

2016-02-15 11:28:16SHUYu

SHU Yu

(Department of Economic and Trade, Anhui Business College Vocational Technology, Wuhu 241002, China)

Commutator of Marcinkiewicz Integrals Associated with Schr?dinger Operators on Variable Exponent Spaces

SHU Yu

(Department of Economic and Trade, Anhui Business College Vocational Technology, Wuhu 241002, China)

In this paper, we prove the boundedness of commutator of Marcinkiewicz integrals associated with Schr?dinger operators on variable exponent spaces.

Marcinkiewicz integrals; commutator; Schr?dinger operator; variable exponent; Morrey spaces

Classification code:O174.3 Document code: A Paper No:1001-2443(2016)06-0535-07

0 Introduction

In this paper, we consider the Schr?dinger differential operator onRn(n≥3).

L=-△+V(x)

AnonnegativelocallyLqintegrablefunctionV(x)onRnis said to belong toBq(q>1)ifthereexistsaconstantC>0suchthatthereverseH?lderinequality

holdsforeveryballinRn, see [1].

The commutator of Marcinkiewicz integral operatorμbisdefinedby

Stein[2]firstintroducedtheoperatorμandprovedthatμisoftype(p,p)(1

It is well known that function spaces with variable exponents were intensively studied during the past 20 years, due to their applications to PDE with non-standard growth conditions and so on, we mention e.g. ([8, 9]). A great deal of work has been done to extend the theory of maximal, potential, singular and Marcinkiewicz integrals operators on the classical spaces to the variable exponent case, see([10]-[15]). It will be an interesting problem whether we can establish the boundedness of commutator of Marcinkiewicz integrals associated with Schr?dinger operators on variable exponent spaces. The main purpose of this paper is to answer the above problem.

To meet the requirements in the following sections, here, the basic elements of the theory of the Lebesgue spaces with variable exponent are briefly presented.

Letp(·):Rn→[1,∞) be a measurable function. The variable exponent Lebesgue spaceLp(·)(Rn) is defined by

Lp(·)(Rn)isaBanachspacewiththenormdefinedby

Wedenote

LetP(Rn)bethesetofmeasurablefunctionp(·)onRnwith value in [1,∞) such that 1

andonedefines

B(Rn)isthesetofp(·)∈P(Rn)satisfyingtheconditionthatMisboundedonLp(·)(Rn).

Forx∈Rn,thefunctionmV(x)isdefinedby

Forbrevity,inthispaper,Calwaysmeansapositiveconstantindependentofthemainparametersandmaychangefromoneoccurrencetoanother.B(x,r)={y∈Rn:|x-y|

1 Results and Some Lemmas

Definition 1.1[12]For anyp(·)∈B(Rn),letkp(·)denotethesupremumofthoseq>1suchthatp(·)/q∈B(Rn).Letep(·)betheconjugateofkp′(·).

Definition 1.2[12]Letp(·)∈L∞(Rn)and10suchthatforanyx∈Rnandr>0,ufulfills

(1)

WedenotetheclassofMorreyweightfunctionsbyWp(·).

NextwedefinetheMorreyspaceswithvariableexponentrelatedtothenonnegativepotentialV.

Nowitisinthispositiontostateourresults.

Theorem 1.1 SupposeV∈Bqwithq>1andp(x)∈B(Rn),then

Theorem 1.2 SupposeV∈Bqwithq>1,b∈BMO,-∞<α<∞andp(x)∈B(Rn).If

(2)

then

Remark 1 We can easily show thatufulfills(2)impliesu∈Wp(·),see[16].

Inordertoproveourresult,weneedsomeconclusionsasfollows.

Lemma 1.1[18]Letp(·)∈P(Rn):Thenthefollowingconditionsareequivalent:

(1)p(·)∈B(Rn).

(2)p′(·)∈B(Rn).

(3) (p(·)/q∈B(Rn)forsome1

(4) (p(·)/q)′∈B(Rn)forsome1

Lemma1.1ensuresthatkp(·)iswell-definedandsatisfies1

Lemma 1.2[19]Ifp(·)∈P(Rn),thenforallf∈Lp(·)(Rn)andallg∈Lp′(·)(Rn)wehave

∫Rn|f(x)g(x)|dx≤rp‖f‖Lp(·)(Rn)‖g‖Lp′(·)(Rn),

whererp:=1+1/p--1/p+.

Lemma 1.3[10]Ifp(·)∈B(Rn),thenthereexistsC>0suchthatforallballsBinRn,

C-1|B|≤‖χB‖Lp(·)(Rn)‖χB‖Lp′(·)(Rn)≤C|B|.

Lemma 1.4[12]Letp(x)∈B(Rn).Forany10suchthatforanyx0∈Rnandr>0,wehave

Lemma 1.6[21]LetΩ∈Lipγ(Sn-1),b(x)∈BMOandp(·)∈B(Rn),wehave

‖μbf‖Lp(·)(Rn)≤C‖f‖Lp(·)(Rn).

Lemma 1.7[1]For everyN>0thereexistsaconstantCsuchthat

and

Lemma 1.8[1]SupposeV∈Bqwithq≥n/2.ThenthereexistpositiveconstantsCandk0suchthat

Lemma 1.9[22]Letkbeapositiveinteger.Thenwehavethatforallb∈BMO(Rn) and alli,j∈Zwithi>j,

2 Proof of Theorems

Proof of Theorem 1.1 Fixx∈Rnand letr=ρ(x).Usingthesameideain[5]and[4],wehave

ForA1,byLemma1.7,wehave

Obviously,

ForA3,byLemma1.7,wehave

ItremainstoestimateA4.FromLemma1.7,takeN=1,weobtain

Thus,usingLemma1.5andLemma1.6,wearrivethefollowinginequality

andhencetheproofofTheorem1.1iscomplete.

wheref0=fχB(z,2r),fi=fχB(z,2i+1r)B(z,2ir)fori≥1.Hence,wehave

ByTheorem1.1,weobtain

Becauseinequality(1)andLemma1.4implythatu(x,r)≥Cu(x,2r).Therefore,weobtain

Furthermore,foranyi≥1,x∈B(z,r)andy∈B(z,2i+1r)B(z,2ir),wenotethat|x-y|≥|y-z|-|x-z|>C2ir.ByLemma1.7andMinkowski'sinequality,wehave

UsingLemma1.8,wederivetheestimate

(3)

ApplyingLemma1.2andinequality(3),wegetthat

Subsequently,takingthenorm‖·‖Lp(·)(Rn)andusingLemma1.9,wehave

×‖b‖BMO‖fχB(z,2i+1r)‖Lp(·)(Rn)‖χB(z,r)‖Lp(·)(Rn)‖χB(z,2i+1r)‖Lp′(·)(Rn).

ApplyingLemma1.3withB=B(z,2i+1),wehave

TakingN=(-[α]+1)(k0+1),weobtain

Asufulfills(2)andα<0,weobtain

andhencetheproofofTheorem1.2iscomplete.

[1] SHEN Z. Lp estimates for Schr?dinger operators with certain potentials[J]. Ann Inst Fourier(Grenoble), 1995,45(2):513-546.

[2] STEIN E M. On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz[J]. Transactions of the American Mathematical Society, 1958,88:430-466.

[4] GAO W, TANG L. Boundedness for marcinkiewicz integrals associated with Schr?dinger operators[J]. Proceedings-Mathematical Sciences Indian Acad Sci, 2014,124(2):193-203.

[5] CHEN D, ZOU D. The boundedness of Marcinkiewicz integral associated with Schr?dinger operator and its commutator[J]. Journal of Function Spaces, Article ID402713, 10pages, 2014.

[6] TANG L, DONG J. Boundedness for some Schr?dinger type operators on Morrey spaces related to certain nonnegative potentials[J]. J Math Anal Appl, 2009,355(1):101-109.

[7] CHEN D, JIN F. The Boundedness of Marcinkiewicz integrals associated with Schr?dinger operator on Mmorrey spaces[J]. J Fun Spaces, Article ID901267, 11pages, 2014.

[8] CHEN Y, LEVINE S, RAO M. Variable exponent, linear growth functionals in image restoration[J]. SIAM J Appl Math, 2006,66(4):1383-1406.

[10] CRUZ-URIBE D, FIORENZA A, MARTELL J M, et al. The boundedness of classical operatorson variableLpspaces[J]. Annales Academiae Scientiarum Fennicae Math., 2006,31(1):239-264.

[11] NEKVINDA A. Hardy-Littlewood maximal operator onLp(x)(Rn) [J]. Math Inequal Appl, 2004,7:255-265.

[12] HO K-P. The fractional integral operators on Morrey spaces with variable exponent on unbounded domains[J]. Math Inequal Appl, 2013,16:363-373.

[13] XUAN Z, SHU L. Boundedness for commutators of Calderón-Zygmund operator on Morrey spaces with variable exponent[J]. Anal Theory Appl, 2013,29(2):128-134.

[14] ALMEIDA A, HASANOV J, SAMKO S. Maximal and potential operators in variable exponent Morrey spaces[J]. Georgian Math J, 2008,15:195-208.

[15] KOKILASHVILI V, MESKHI A. Boundedness of maxmial and singular operators in Morrey spaces with variable exponent[J]. Armenian Math J, 2008,1:18-28.

[16] BONGIOANNI B, HARBOURE E, SALINAS O. Class of weights related to Schr?dinger operators[J]. J Math Anal Appl, 2011,373:563-579.

[17] TANG L. Weighted norm inequalities for commutators of Littlewood-Paley functionsrelated to Schr?dinger operators[J]. Archive der Mathematik, 2014,102:215-236.

[18] DIENING L. Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces[J]. Bulletin des Sciences Mathématiques, 2005,129(8):657-700.

[20] ZHANG P, WU J. Commutators of the fractional maximal function on variable exponent Lebesgue spaces[J]. Czechoslovak Mathematical Journal, 2014,64(139):183C197.

[21] WANG H, FU Z, LIU Z. Higher order commutators of Marcinkiewicz integrals on variable Lebesgue spaces[J]. Acta Math Scientia(Ser A), 2012,32(6):1092-1101.

[22] IZUKI M. Boundedness of commutators on Herz spaces with variable exponent[J]. Rend Circ Mat Palermo, 2010,59(2):199-213.

2016-03-10

SupportedbyNSFC(11201003)andEducationCommitteeofAnhuiProvince(KJ2016A253;SKSM201602).

SHU Yu(1985-), male, born in Wuhu, Anhui Province, Lecture, M.S.D.

束宇.變指數空間上與Schr?dinger算子相關的Marcinkiewica積分算子交換子[J].安徽師范大學學報:自然科學版,2016,39(6):535-541.

變指數空間上與Schr?dinger算子相關的Marcinkiewicz積分算子交換子

束 宇

(安徽商貿職業技術學院 經濟貿易系,安徽 蕪湖 241002)

在本文中,我們主要證明了變指數空間上與Schr?dinger算子相關的Marcinkiewicz積分算子交換子的有界性.

Marcinkiewicz積分;交換子;Schr?dinger算子;變指數;Morrey空間

10.14182/J.cnki.1001-2443.2016.06.006

主站蜘蛛池模板: 亚洲综合色婷婷中文字幕| 丁香婷婷综合激情| 国产免费怡红院视频| 91免费观看视频| 国产网站黄| 精品福利国产| 无码网站免费观看| 麻豆精品视频在线原创| 再看日本中文字幕在线观看| 日日噜噜夜夜狠狠视频| 亚洲福利网址| 成年人视频一区二区| 色天堂无毒不卡| 无码AV动漫| 亚洲欧美精品在线| 国产成人在线无码免费视频| 欧美激情视频一区二区三区免费| 亚洲欧美日韩另类在线一| 欧美国产日韩在线播放| 国产H片无码不卡在线视频| 亚洲无限乱码| 国产午夜精品鲁丝片| 不卡午夜视频| h视频在线观看网站| 色欲不卡无码一区二区| 五月天综合婷婷| 动漫精品中文字幕无码| 国产无码精品在线| 农村乱人伦一区二区| 中文字幕在线观| 亚洲男人的天堂视频| 欧美性精品| 久久77777| 天天色综合4| 中文字幕色在线| 国产精品视频白浆免费视频| 区国产精品搜索视频| 免费中文字幕一级毛片| 欧美日韩久久综合| 国产精品七七在线播放| 制服丝袜亚洲| 尤物在线观看乱码| 日韩A∨精品日韩精品无码| 亚洲国产综合自在线另类| 99精品这里只有精品高清视频| 99久久精品免费看国产免费软件| 欧美a在线看| 影音先锋丝袜制服| 亚洲国产高清精品线久久| 五月婷婷亚洲综合| 国产精品所毛片视频| 97成人在线视频| 精品人妻系列无码专区久久| 国产成人在线无码免费视频| 亚洲一区二区三区国产精品| 欧美不卡视频在线| 亚洲综合婷婷激情| 国产精品免费电影| 欧美有码在线| 亚洲第一区在线| 91在线一9|永久视频在线| 白浆视频在线观看| 国产美女视频黄a视频全免费网站| 国产成人狂喷潮在线观看2345| 有专无码视频| 久久人搡人人玩人妻精品| 国产成人精品高清不卡在线| 亚洲欧美自拍视频| 国产日本欧美在线观看| 久久久久国产一级毛片高清板| 国产a网站| 日本亚洲国产一区二区三区| 国产在线专区| 久久青草免费91线频观看不卡| 日韩高清中文字幕| 午夜人性色福利无码视频在线观看| 国产精品一区二区无码免费看片| 久久久亚洲色| 69视频国产| 中文字幕在线看| 国产拍在线| 亚洲综合久久成人AV|