馮旭東,呂波,李春
(北京理工大學生命學院,北京 100081)
?
酶分子穩定性改造研究進展
馮旭東,呂波,李春
(北京理工大學生命學院,北京 100081)
摘要:酶催化轉化在食品、醫藥和精細化工等領域起著越來越重要的作用。然而,目前大多數酶反應需要在較溫和的條件下進行以維持其正常活性,而在實際應用的逆境中(如高熱、高酸、高鹽等),酶的耐受性卻較差、容易失活從而導致反應效率下降,極大地限制了其推廣和應用。因此,對酶分子進行抗逆改造以提高其穩定性和催化活性,是當前研究的熱點也是難點。本文從化學修飾和分子改造兩個方面總結了酶分子穩定性改造的新進展,從定向進化、半理性設計、理性設計和糖基化修飾4個角度重點闡述了分子改造提高酶穩定性的方法,重點介紹了糖基化作為一種新的酶分子穩定性改造技術的思路。
關鍵詞:生物化工;生物催化;酶;穩定性;分子改造;糖基化
2015-06-30收到初稿,2015-09-24收到修改稿。
聯系人:李春。第一作者:馮旭東(1985—),男,博士研究生,講師。
Received date: 2015-06-30.
生物轉化是生物化工過程的核心技術之一,其中酶催化轉化是生物轉化的重要組成部分。酶分子是由活細胞產生的一種具有特殊催化功能的生物大分子,其高效性與專一性是其他化學催化劑所無法比擬的優勢,因此其在食品、醫藥和精細化工等領域起著越來越重要的作用[1]。然而,目前大多數酶反應需要在較溫和的條件下進行以維持其正常活性,而在實際應用的逆境中(如高熱、高酸、高鹽等),酶的耐受性卻較差;容易失活從而導致反應效率下降,極大地限制了其推廣和應用。因此,對酶分子進行抗逆改造以提高其穩定性和催化活性,是當前研究的熱點也是難點。本文從化學修飾以及分子改造兩個方面總結了酶分子穩定性改造的最新進展并展望了其未來的發展方向(圖1)。

圖1 化學修飾、分子改造以及糖基化改造酶分子穩定性Fig.1 Engineering enzyme stability through chemical modification, molecular modification and glycosylation
在分子生物學技術興起之前,化學修飾是提高酶穩定性的最重要方法之一[2],其中應用最廣泛的修飾劑是聚乙二醇(PEG)。PEG修飾法最早是在1985年由Veronese等提出[3],PEG主要與酶分子的巰基、α-氨基、ε-氨基、羧基以及羥基等基團進行反應[4],其原理目前普遍認為是PEG的兩親性可以提高酶分子的構象動力學從而提高其在高溫、有機溶劑等逆境下的穩定性[5-6]。近些年也逐漸發展了其他的化學修飾方法。Inouye等[7]分別用2, 4, 6-三硝基苯磺酸,2, 4-二甲氧基聚乙二醇-6-氯-三嗪,以及戊二醛對小麥β-淀粉酶的氨基進行修飾,最終使其耐熱溫度提高了1~8℃,熱力學性質分析表明酶穩定性的提高主要是熵驅動。Ismaya等[8]發現用非極性的酸酐修飾α-淀粉酶可以將其穩定性提高18倍,用親水性的PEG修飾可以提高α-淀粉酶對EDTA和胰蛋白酶的抗性。離子液體修飾也可以提高酶的穩定性,Iborra等[9]用[btma][NTf2]或[toma][NTf2]修飾脂肪酶CALB,其在正己烷以及95℃高溫下的穩定性均顯著提高,構象分析表明離子液體有利于維持酶分子二級結構的穩定性。酶的固定化通??梢蕴岣呙阜肿訕嬒蟮膭傂詮亩岣咂錈岱€定性[10]。隨著納米技術的興起,將酶固定在納米材料上形成的納米酶成為了研究的熱點[11]。Ge等[12]通過向酶的磷酸鹽緩沖液中加入硫酸銅制備出了雜化納米花結構,而酶被包埋在了納米花結構中,其穩定性較游離酶有了大幅度提高。但是不適當的化學修飾也會降低酶的穩定性,如van der Veen等[13]用琥珀?;揎椚芫负螅錈岱€定性反而有所下降,溶解溫度降低了16.5℃,原因主要是由于琥珀?;杷鶊F的暴露降低了溶菌酶構象的穩定性。因此,化學修飾沒有普適性的標準,需要根據酶的特性以及需求來選擇合適的化學試劑及修飾方法。另外,化學修飾經常伴隨著酶活性的損失,其對每批的酶分子都要進行修飾,不同批次之間存在著差異性。上述缺點限制了該方法在酶分子穩定性改造中的應用,如何解決這些問題將是化學修飾今后的研究重點。除了化學修飾,以遺傳學操作為基礎的分子改造技術是另外一種提高酶分子穩定性的重要方法。
2.1 定向進化
定向進化通過模擬自然進化機制(隨機突變、重組和自然選擇),以改進的誘變技術結合確定進化方向的選擇方法,在體外改造基因,定向選擇有價值的非天然蛋白分子獲得某性能優化的突變體[14-15]。定向進化主要包括建立突變文庫、選擇合適的表達體系以及建立快速、有效的高通量篩選方法3個關鍵步驟[16]。在建立突變體文庫方面,為了得到分子多樣性最廣泛采用的方法有隨機突變的易錯PCR 和DNA改組技術[17]。定向進化的最大優點是不需事先了解蛋白分子的空間結構和機制就可以獲得滿足需要的突變體。一個經典的例子是在1996年,Moore等[18]通過4輪易錯PCR的定向進化將p-硝基芐基酯酶在25%二甲基甲酰胺中的活性提高了50~60倍。Ogino等[19]利用易錯PCR的定向進化方法將BPO-A1 過氧化氫酶的熱穩定性提高了5倍。上述的定向進化是在原核生物中進行的,最近也有報道在真核生物中進行定向進化來提高酶的穩定性。Xu等[20]用2輪的易錯 PCR和2輪的DNA改組技術提高了在畢赤酵母中表達的脂肪酶的熱穩定性,其溶解溫度提高了22℃,在60℃下的熱穩定性提高了46倍。Zhao等[21]提出了定向進化和定點飽和突變相結合的方法提高酶的熱穩定性,首先用易錯PCR構建了含有3000個突變體的文庫,在65℃下篩選到了7個熱穩定性提高的單點突變體,接著通過組合飽和突變獲得了四點突變體,其熱穩定性較野生型提高了24.7倍。利用相同的思路,Yu等[22]將還原酶CgKR1溶解溫度提高了12℃。Hatada等[23]通過定向進化的隨機突變確定了對呋喃果糖苷酶熱穩定性有影響的5個氨基酸位點,接著對其進行迭代飽和突變,最后獲得的突變體在65℃下的半衰期提高了16.5倍。盡管定向進化被廣泛應用到了酶穩定性改造并取得了很大的成功,但由于其構建的文庫中突變體數量太多,篩選過程成為了一項非常龐雜的工作,而得到的絕大多數突變體性質卻沒有改進。隨著越來越多的酶晶體結構得到解析,學者逐漸發展了結合酶晶體結構以及催化特性的半理性以及理性的改造方法[24]。
2.2 半理性設計
半理性設計以對酶分子結構與功能有一定的理解為基礎,將目標集中在少量的位點上,與定向進化相比,其優勢在于突變體文庫較小,不需要高通量的篩選方法,更容易獲得正向突變結果。半理性設計組合方法多變,主要策略有:基于蛋白質結構分析,對特定位點隨機突變;針對特定位點,結合隨機突變與點飽和突變進行改造;針對特定位點,先進行隨機突變再點飽和突變;結合計算輔助的半理性設計。
2.2.1 提高蛋白質柔性區域的剛性 酶分子的穩定性主要取決于其構象的剛性,統計學表明蛋白質的剛性越強其抗逆性也越強,因此,學者提出對酶分子的柔性區域進行剛性增強的改造來提高其穩定性,其中,連接主要二級結構(α-螺旋和β-折疊)的位于酶蛋白表面的loop具有很大的柔性,引起了廣泛關注[25]。例如,Rao等[26]對枯草芽孢桿菌脂肪酶表面所有loop的91個氨基酸進行了定點飽和突變,鑒定出了6個位點對脂肪酶穩定性有關鍵影響,最終得到的6點突變體在DMSO中的耐受性提高了3倍。除了表面的loop,蛋白質的N和C端也是柔性較高的區域,這也是蛋白質晶體衍射時,經常有N和C端氨基酸序列丟失的主要原因,因此對該區域進行改造經??梢蕴岣呙傅姆€定性[25]。Gilbert 等[27]通過定向進化結合定點飽和突變得到了含有7個突變位點的木聚糖酶,其溶解溫度較野生型提高了25℃,有趣的是7個位點全部位于酶分子的N端。Sylvestre等[28]發現將木聚糖酶N端的29、31、43 和58位的氨基酸突變后,其熱穩定性較野生型提高了30倍,見圖2。
2.2.2 增強亞基間的相互作用 對于多亞基酶來講,亞基間是通過范德華力、氫鍵以及靜電等非共價作用連接從而保持酶分子整體構象的穩定性,這些作用力較弱,在逆境下容易被破壞,成為酶分子變性的重要原因。因此,通過強化亞基界面的相互作用而提高多亞基酶的穩定性成為了一種新思路。Bechtold等[29]通過系統的亞基界面作用的優化提高了D-塔格糖異構酶(PcDTE)的穩定性(圖3)。PcDTE是同源二聚體,作者通過分析亞基界面間的氨基酸,得到了31個潛在的對酶分子構象有影響的突變位點,接著對這些位點進行了迭代飽和突變,最終得到的9位點突變體,其半衰期較野生型提高了80多倍,構象分析表明穩定性提高的主要原因是突變后的氨基酸與相鄰的亞基間形成了更多的氫鍵作用。

圖2 木聚糖酶突變體N端的 Ala-29, Leu-31, Phe-43和Ile-58 通過與C端的疏水作用提高了酶分子的熱穩定性[28]Fig.2 Ala-29, Leu-31, Phe-43, and Ile-58 at N-terminal of xylanase mutants established hydrophobic interaction with C-terminal to enhance thermostability[28]
2.2.3 基于B-factor的半理性設計 B-factor是半理性改造酶穩定性的一個重要依據,它反映一個氨基酸在整個酶分子中的柔性,B-factor值越大,柔性也越大,不利于酶的穩定性,因此可以選擇B-factor值較大的氨基酸進行飽和突變,減弱其柔性,從而得到抗逆性強的酶突變體[30-31]。Reetz等[30]找到了脂肪酶LipA的B-factor值最高的10個氨基酸位點,通過對這些位點進行5輪的迭代飽和突變,將其在55℃的熱穩定性提高了450多倍。Zhao等[32]對脂肪酶YlLip2的6個B-factor值最高的氨基酸位點進行迭代飽和突變,得到了兩個陽性突變體,其耐熱性的半衰期提高了2~5倍。需要注意的是,一般的B-factor值是通過酶分子的晶體結構得到的,而酶在溶液中的柔性要大于其晶體狀態,因此,通過B-factor值進行酶穩定性改造時需要考慮到介質對酶蛋白構象的影響[33]。相應發現不同具有高穩定性的酶,其維持穩定性的機制不斷被了解,使得采用理性設計對酶分子進行改造以提高其穩定性變得越來越具有理論意義。目前應用較為廣泛的理性設計方法主要有:同源比對的策略,蛋白質表面電荷的優化策略,基于二硫鍵的設計策略,脯氨酸效應的設計策略,基于蛋白質解折疊自由能的設計策略等。
2.3 理性設計
理性設計是在對酶蛋白結構與功能深刻認識的基礎上,以定點突變技術和定點飽和突變技術為主的,對酶分子進行改造的方法。隨著研究的深入,

圖3 D-塔格糖3-差向異構酶PcDTE的同源二聚體結構 (a);PcDTE單聚體界面的10個高度保留氨基酸 (b);PcDTE單聚體界面的對熱穩定性有顯著影響的9個氨基酸(c)[29]Fig.3 Dimer structure of PcDTE (a); ten highly conserved residues at PcDTE interface (b); and mutation of nine critical residues at PcDTE interface can significantly improve thermostability (c)[29]
2.3.1 同源比對 研究發現,中溫酶與其同家族嗜熱酶之間往往具有較高的同源性,因此,可以通過與熱穩定性高的同源蛋白質比對序列,找出與熱穩定性相關的氨基酸位點,然后對其進行突變,進而可以提高中溫酶的穩定性[34]。Lau等[35]將嗜溫性果膠酸酯裂解酶和4個同源耐熱酶進行氨基酸序列比對,發現了9個潛在特異性顯著的位點,以耐熱酶為模板進行了定點突變,最終得到的突變體溶解溫度提高了6℃,見圖4。利用類似的方法,Bejar等[36]通過理性分析只對淀粉酶MAUS149的兩個關鍵點進行定點突變,將其在55℃下的半衰期提高了15~25 min。
2.3.2 基于蛋白質構象的理性設計 除了定點突變,也有對酶分子柔性loop進行理性截短、截除或替換操作從而提高穩定性的報道。Hauer等[37]對NCR還原酶的結構進行分析,得到B-factor值較高的loop,將其中的4個氨基酸截除,突變酶在45℃的酶活較野生型提高了84.6%,在有機溶劑2-甲基-2-戊烯醛的耐受性提高了54.1%。Iwasaki等[38]通過對磷脂酶D結構的分析,找到了一個高度柔性的位于酶分子表面的loop,將該loop整個截除后,突變酶在70℃ 的熱穩定性提高了11.7倍,模擬分析表明,loop環的截除有利于提高酶分子的構象穩定性,見圖5。Bornscheuer等[39]發現loop替換也可以提高酶分子的穩定性,作者將嗜溫性酯酶BsteE的“cap區域”與其同源的嗜熱酯酶BsubE的相應區域進行對調,將BsteE的溶解溫度提高了4℃。

圖4 通過嗜溫性果膠酸酯裂解酶NP_638163和4個同源耐熱酶的氨基酸序列比對確定對其熱穩定性有顯著影響的突變體[35]Fig.4 Multiple sequence alignment of pectate lyases with its thermophilic counterparts[35]

圖5 通過截除磷脂酶D表面的loop提高酶分子熱穩定性[38]Fig.5 Deletion of dynamic surface loop improves thermostability of phospholipase D[38]
2.3.3 基于計算機模擬的理性設計 上述的理性設計通常需要對酶分子的構象有較為深刻的認識,盡管隨著X射線晶體衍射技術的進步,越來越多的蛋白質結構被解析出來,但是其總數量仍然很少,這大大限制了理性改造的進一步發展。近些年,計算機模擬技術的發展很好地彌補了這一不足,在研究某個目標蛋白時,即使沒有其立體結構的信息,也可以同源結構為模板,借助分子模擬技術預測其結構,已經逐漸應用到酶分子的理性改造中[40]。Wu 等[41 ]通過分子動力學模擬了嗜溫性木聚糖酶AoXyn11A和其同源嗜熱酶EvXyn11TS的立體結構,接著比較了兩者B-factor值差異較大的N端31個氨基酸,將EvXyn11TS的N端替換到AoXyn11A中,通過分子動力學模擬得到改造后的AoXyn11A能量從-611.2 減少到了-663.2 kJ·mmol-1,證明了其構象更加穩定,實驗結果表明改造后的AoXyn11A在70℃的酶活提高了197倍, 見圖6。Wu等[42]通過計算甲基硝苯硫磷酯水解酶所有位點突變后的熵值和去折疊自由能,以其為依據,得到了7個潛在的對酶分子熱穩定性有影響的突變位點,實驗結果表明,其中6個位點的突變可以提高酶的熱穩定性,其溶解溫度最多提高了11.7℃。

圖6 通過分子動力學模擬研究兩種熱穩定性不同的木聚糖酶EvXyn11TS和AoXyn11A的B-factor[41]Fig.6 B-factors of amino acid residues of EvXyn11TSand AoXyn11A after a 15 ns MD simulation process at temperature of 300 K[41]
2.3.4 引入外源作用力的理性設計 除了通過遺傳學操作改變酶分子自身的氨基酸或loop的組成改變其空間結構,也可以引入外源的分子或作用力穩定酶分子的構象從而提高其穩定性。例如,自聚集兩性肽(SAPs)同時含有一定數量的親水性和疏水性的氨基酸,其可以自發地形成規則的納米結構,Chen等[43]向脂氧化酶的N端融合6種不同的SAPs,使其在50℃下的熱穩定性提高了2.3~4.5倍,比酶活提高了1~2.8倍。向酶分子引入剛性較強的氨基酸也可以提高其穩定性,其中最重要的是脯氨酸法。脯氨酸包含一個亞氨基、一個羧基及一個吡咯烷環側鏈,由于自身吡咯烷環的束縛,脯氨酸具有更小的構象自由度,可以減少酶分子構象在變性狀態下的熵值,因此在酶分子柔性區域引入脯氨酸提高酶穩定性,成為了理性改造提高酶分子穩定性的重要手段[44]。湯恒等[45]對重組產紫青霉β-葡萄糖醛酸苷酶280位的甘氨酸突變為脯氨酸,使其在60 °C下的熱穩定性提高了5倍。最近,Liu等[46]發現向α-淀粉酶的表面引入精氨酸也可以提高其熱穩定性。
靜電作用是維持酶分子構象穩定性的重要作用之一,因此在酶分子合適區域引入鹽橋也可以提高酶的穩定性。Yu等[47]系統地研究了在不同區域引入鹽橋對腈水合酶熱穩定性的影響。作者找到了3個柔性較大的區域:近活性中心、表面loop以及C末端,接著分別向這3個區域引入鹽橋,其中只有在C末端引入的鹽橋使酶分子的熱穩定性提高了160%、在超聲波中的穩定性提高了75%。Hwang 等[48]通過B-factor指標,在葡萄糖苷酶的表面找到潛在的帶同種電荷的氨基酸,將其突變成帶相反電荷的氨基酸從而和相鄰氨基酸形成鹽橋,利用這種方法,共引入了6對鹽橋,酶分子的溶解溫度提高了0.6~8.8℃。二硫鍵對于維持大部分蛋白質的功能和穩定性起著重要的作用[49],因此,在酶分子合適區域引入二硫鍵也可以提高其構象穩定性[50]。Zhang等[51]向纖維素酶C的由56個氨基酸組成的柔性亞結構域引入了二硫鍵交聯,使其在65℃下的半衰期提高了5.8倍。Wu等[52]通過分子動力學模擬確定了A型阿魏酸酯酶穩定性較差的氨基酸位點,結合軟件分析考慮這些潛在位點的物理化學性質,從而提高二硫鍵的引入概率,最終找到了一對位點A126-N152,將其突變為半胱氨酸引入二硫鍵,將其熱穩定性提高了10倍。
2.4 糖基化
糖基化是蛋白質翻譯后的一種重要的加工過程,根據蛋白質與糖鏈連接類型的不同,糖基化主要分為N-糖基化和O-糖基化[53]。其中,N-糖基化修飾的糖鏈連接在Asn-X-Ser/Thr結構的(X-脯氨酸外的任意一種氨基酸)天冬酰胺側鏈的酰胺基上[54]。N-糖基化是最普遍、最重要的糖基化方式,生物信息學分析表明多于一半的真核蛋白都是糖蛋白,且多數為N-糖蛋白[55]。大量研究表明糖基化對酶的穩定性有很大的影響。Fonseca-Maldonado等[56]研究了糖基化對P. pastoris中重組表達的木聚糖酶熱穩定性的影響,通過質譜分析確定了4個糖基化位點,結果表明糖基化的去除會使木聚糖酶的耐熱性降低至1/172,并且糖基化位點比糖鏈對熱穩定性的影響更大。Li等[57-58]研究了N-糖基化對重組的β-葡萄糖醛酸苷酶的活性以及生化特性的影響。用酶解法完全水解掉糖基后,β-葡萄糖醛酸苷酶的熱穩定性降低了15%~45%,另外,去糖基化對酶分子的二級結構沒有顯著的影響,但是會促進熱變性過程中酶的聚集,增加其柔性,從而導致其不可逆變性。Wu等[59]發現當把P. pastoris表達的TI脂肪酶33位的糖基去除后,其耐熱性降低了80%。Zheng 等[60]將彈性蛋白酶在P. pastoris中重組表達進行糖基化修飾,其熱穩定性有了顯著的提高,在70℃半衰期提高了40%。酶蛋白的空間結構決定了其功能,因此糖基化提高酶穩定性的機理主要在于其對酶蛋白結構方面的穩定作用。一般認為,糖基化可以減少蛋白質的聚集,有利于其正確折疊,增加蛋白質的剛性從而提高其穩定性。Shental-Bechor等[61]研究了糖基化對蛋白質SH3 domain折疊的影響,證明糖基化可以減少蛋白質在伸展狀態的穩定性,從而有利于蛋白質的折疊并提高其折疊后的熱力學穩定性。然而,生物體內自發的糖基化隨機性較強,大多數糖基化不能處于穩定酶分子構象的最佳位點,導致其對酶分子穩定性的提升作用不顯著,甚至不合適的糖基化還會降低酶的穩定性,大大限制了其應用[62-63]。鑒于此,有學者提出人工引入糖基化提高酶穩定性的思路。Han等[64]以畢赤酵母為底盤宿主向彈性蛋白酶的36和264位點人工引入了糖基化,其中264位的糖基化使酶在65℃下的半衰期延長了3.7 min,而36位的糖基化反而降低了8 min。由此可見,人工引入糖基化確實可以提高酶的穩定性,但糖基化位點需要謹慎選擇。目前,國內外在這方面均處于剛起步,具有較大的發展空間。
目前對酶分子的穩定性改造主要集中在耐熱性和耐有機溶劑等方面。化學法修飾可以在一定程度上提高酶的穩定性,但經常伴隨著酶活性的損失,并對每批的酶分子都要進行修飾,不同批次之間存在著差異性的問題,解決上述問題是化學修飾今后的研究重點。分子改造中,由于定向進化的工作量較大以及篩選困難,半理性以及理性設計是未來的發展方向,因此如何結合酶分子晶體結構以及計算機輔助模擬來理性設計突變策略在不影響酶活的條件下有效提高酶穩定性是今后研究的重點。糖基化是調節酶穩定性的一種有效手段,但是目前對糖基化影響酶構象機理的研究還不徹底,如何能夠理性地設計位點引入糖基化是今后的研究重點。
References
[1] BORNSCHEUER U T, HUISMAN G W, KAZLAUSKAS R J, et al. Engineering the third wave of biocatalysis [J]. Nature, 2012, 485 (7397): 185-194.
[2] STEPANKOVA V, BIDMANOVA S, KOUDELAKOVA T, et al. Strategies for stabilization of enzymes in organic solvents [J]. ACS Catalysis, 2013, 3 (12): 2823-2836.
[3] VERONESE F M, LARGAJOLLI R, BOCCU E, et al. Surface modification of proteins—activation of monomethoxy-polyethylene glycols by phenylchloroformates and modification of ribonuclease and superoside-dismutase [J]. Applied Biochemistry and Biotechnology,1985, 11 (2): 141-152.
[4] GONZALEZ-VALDEZ J, RITO-PALOMARES M, BENAVIDES J. Advances and trends in the design, analysis, and characterization of polymer-protein conjugates for “PEGylaided” bioprocesses [J]. Analytical and Bioanalytical Chemistry, 2012, 403 (8): 2225-2235.
[5] CASTILLO B, SOLA R J, FERRER A, et al. Effect of PEG modification on subtilisin Carlsberg activity, enantioselectivity, and structural dynamics in 1,4-dioxane [J]. Biotechnology and Bioengineering, 2008, 99 (1): 9-17.
[6] LI C M, HUANG M, GU Z B, et al. Nanosilica sol leads to further increase in polyethylene glycol (PEG) 1000-enhanced thermostability of beta-cyclodextrin glycosyltransferase from Bacillus circulans [J]. Journal of Agricultural and Food Chemistry, 2014, 62 (13): 2919-2924.
[7] DABA T, KOJIMA K, INOUYE K. Chemical modification of wheat β-amylase by trinitrobenzenesulfonic acid, methoxypolyethylene glycol, and glutaraldehyde to improve its thermal stability and activity [J]. Enzyme and Microbial Technology, 2013, 53 (6/7): 420-426.
[8] ISMAYA W T, HASAN K, KARDI I, et al. Chemical modification of Saccharomycopsis fibuligera R64 alpha-amylase to improve its stability against thermal, chelator, and proteolytic inactivation [J]. Applied Biochemistry and Biotechnology, 2013, 170 (1): 44-57.
[9] LOZANO P, DE DIEGO T, SAUER T, et al. On the importance of the supporting Candida antarctica lipase B in material for activity of immobilized ionic liquid/hexane and ionic liquid/supercritical carbon dioxide biphasic media [J]. Journal of Supercritical Fluids, 2007, 40 (1): 93-100.
[10] DICOSIMO R, MCAULIFFE J, POULOSE A J, et al. Industrial use of immobilized enzymes [J]. Chemical Society Reviews, 2013, 42 (15): 6437-6474.
[11] MISSON M, ZHANG H, JIN B. Nanobiocatalyst advancements and bioprocessing applications [J]. Journal of the Royal Society Interface, 2015, 12 (102). DOI: 10.1098/rsif.2014.0891.
[12] GE J, LEI J, ZARE R N. Protein-inorganic hybrid nanoflowers [J]. Nature Nanotechnology, 2012, 7 (7): 428-432.
[13] VAN DER VEEN M, NORDE W, STUART M C. Effects of succinylation on the structure and thermostability of lysozyme [J]. Journal of Agricultural and Food Chemistry, 2005, 53 (14): 5702-5707.
[14] COBB R E, CHAO R, ZHAO H M. Directed evolution: past, present, and future [J]. AIChE Journal, 2013, 59 (5): 1432-1440.
[15] MARTINEZ R, JAKOB F, TU R, et al. Increasing activity and thermal resistance of Bacillus gibsonii alkaline protease (BgAP) by directed evolution [J]. Biotechnology and Bioengineering, 2013, 110 (3): 711-720.
[16] KOYAMA Y, HIDAKA M, NISHIMOTO M, et al. Directed evolution to enhance thermostability of galacto-N-biose/lacto-N-biose I phosphorylase [J]. Protein Engineering Design & Selection, 2013, 26 (11): 755-761.
[17] DENARD C A, REN H Q, ZHAO H M. Improving and repurposing biocatalysts via directed evolution [J]. Current Opinion in Chemical Biology, 2015, 25: 55-64.
[18] MOORE J C, ARNOLD F H. Directed evolution of a para-nitrobenzyl esterase for aqueous-organic solvents [J]. Nature Biotechnology, 1996, 14 (4): 458-467.
[19] YAMADA R, HIGO T, YOSHIKAWA C, et al. Improvement of the stability and activity of the BPO-A1 haloperoxidase from Streptomyces aureofaciens by directed evolution [J]. Journal of Biotechnology, 2014, 192: 248-254.
[20] YU X W, WANG R, ZHANG M, et al. Enhanced thermostability of a Rhizopus chinensis lipase by in vivo recombination in Pichia pastoris [J]. Microbial Cell Factories, 2012, 11: 102.
[21] RAO G D, LEE J K, ZHAO H M. Directed evolution of phloroglucinol synthase PhlD with increased stability for phloroglucinol production [J]. Applied Microbiology and Biotechnology, 2013, 97 (13): 5861-5867.
[22] HUANG L, XU J H, YU H L. Significantly improved thermostability of a reductase CgKR1 from Candida glabrata with a key mutation at Asp 138 for enhancing bioreduction of aromatic alpha-keto esters [J]. Journal of Biotechnology, 2015, 203: 54-61.
[23] OHTA Y, HATADA Y, HIDAKA Y, et al. Enhancing thermostability and the structural characterization of Microbacterium saccharophilum K-1 beta-fructofuranosidase [J]. Applied Microbiology and Biotechnology, 2014, 98 (15): 6667-6677.
[24] WIJMA H J, FLOOR R J, JANSSEN D B. Structure- and sequence-analysis inspired engineering of proteins for enhanced thermostability [J]. Current Opinion in Structural Biology, 2013, 23 (4): 588-594.
[25] NESTL B M, HAUER B. Engineering of flexible loops in enzymes [J]. ACS Catalysis, 2014, 4 (9): 3201-3211.
[26] YEDAVALLI P, RAO N M. Engineering the loops in a lipase for stability in DMSO [J]. Protein Engineering Design & Selection, 2013, 26 (4): 317-324.
[27] DUMON C, VARVAK A, WALL M A, et al. Engineering hyperthermostability into a GH11 xylanase is mediated by subtle changes to protein structure [J]. Journal of Biological Chemistry, 2008, 283 (33): 22557-22564.
[28] SONG L T, TSANG A, SYLVESTRE M. Engineering a thermostable fungal GH10 xylanase, importance of N-terminal amino acids [J]. Biotechnology and Bioengineering, 2015, 112 (6): 1081-1091.
[29] BOSSHART A, PANKE S, BECHTOLD M. Systematic optimization of interface interactions increases the thermostability of a multimeric enzyme [J]. Angewandte Chemie:International Edition, 2013, 52 (37): 9673-9676.
[30] REETZ M T, D CARBALLEIRA J, VOGEL A. Iterative saturation mutagenesis on the basis of B factors as a strategy for increasing protein thermostability [J]. Angewandte Chemie:International Edition, 2006, 45 (46): 7745-7751.
[31] CHEN C C, LUO H Y, HAN X, et al. Structural perspectives of an engineered beta-1,4-xylanase with enhanced enhanced thermostability [J]. Journal of Biotechnology, 2014, 189: 175-182.
[32] WEN S, TAN T W, ZHAO H M. Improving the thermostability of lipase Lip2 from Yarrowia lipolytica [J]. Journal of Biotechnology, 2012, 164 (2): 248-253.
[33] EASTMAN P, PELLEGRINI M, DONIACH S. Protein flexibility in solution and in crystals [J]. Journal of Chemical Physics, 1999, 110 (20): 10141-10152.
[34] CURRIN A, SWAINSTON N, DAY P J, et al. Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently [J]. Chemical Society Reviews, 2015, 44 (5): 1172-1239.
[35] XIAO Z, BERGERON H, GROSSE S, et al. Improvement of the thermostability and activity of a pectate lyase by single amino acid substitutions, using a strategy based on melting-temperature-guided sequence alignment [J]. Applied and Environmental Microbiology, 2008, 74 (4): 1183-1189.
[36] BEN M S, AGHAJARI N, BEN A M, et al. Enhancement of the thermostability of the maltogenic amylase MAUS149 by Gly312Ala and Lys436Arg substitutions [J]. Bioresource Technology, 2011, 102 (2): 1740-1746.
[37] REICH S, KRESS N, NEST B M, et al. Variations in the stability of NCR ene reductase by rational enzyme loop modulation [J]. Journal of Structural Biology, 2014, 185 (2): 228-233.
[38] DAMNJANOVIC J, NAKANO H, IWASAKI Y. Deletion of a dynamic surface loop improves stability and changes kinetic behavior of phosphatidylinositol-synthesizing streptomyces phospholipase D [J]. Biotechnology and Bioengineering, 2014, 111 (4): 674-682.
[39] GALL M G, NOBILI A, PAVLIDIS I V, et al. Improved thermostability of a Bacillus subtilis esterase by domain exchange [J]. Applied Microbiology and Biotechnology, 2014, 98 (4): 1719-1726.
[40] DAMBORSKY J, BREZOVSKY J. Computational tools for designing and engineering enzymes [J]. Current Opinion in Chemical Biology, 2014, 19: 8-16.
[41] GAO S J, WANG J Q, WU M C, et al. Engineering hyperthermostability into a mesophilic family 11 xylanase from Aspergillus oryzae by in silico design of N-terminus substitution [J]. Biotechnology and Bioengineering, 2013, 110 (4): 1028-1038.
[42] TIAN J, WANG P, HUANG L, et al. Improving the thermostability of methyl parathion hydrolase from Ochrobactrum sp. M231 using a computationally aided method [J]. Applied Microbiology and Biotechnology, 2013, 97 (7): 2997-3006.
[43] LU X, LIU S, ZHANG D, et al. Enhanced thermal stability and specific activity of Pseudomonas aeruginosa lipoxygenase by fusing with self-assembling amphipathic peptides [J]. Applied Microbiology and Biotechnology, 2013, 97 (21): 9419-9427.
[44] BOONE C D, RASI V, TU C, et al. Structural and catalytic effects of proline substitution and surface loop deletion in the extended active site of human carbonic anhydrase II [J]. FEBS Journal, 2015, 282 (8): 1445-1457.
[45] 湯恒, 黃申, 馮旭東, 等. 理性設計提高β-葡萄糖醛酸苷酶的熱穩定性 [J]. 化工學報, 2015, 66 (6): 2205-2211. TANG H, HUANG S, FENG X D, et al. Improvement of thermostability of beta-glucuronidase through rational design [J]. CIESC Journal, 2015, 66 (6): 2205-2211.
[46] DENG Z M, YANG H Q, SHIN H D, et al. Structure-based rational design and introduction of arginines on the surface of an alkaline alpha-amylase from Alkalimonas amylolytica for improved thermostability [J]. Applied Microbiology and Biotechnology, 2014, 98 (21): 8937-8945.
[47] CHEN J, YU H, LIU C, et al. Improving stability of nitrile hydratase by bridging the salt-bridges in specific thermal-sensitive regions [J]. Journal of Biotechnology, 2012, 164 (2): 354-362.
[48] LEE C W, WANG H J, HWANG J K, et al. Protein thermal stability enhancement by designing salt bridges: a combined computational and experimental study [J]. Plos One, 2014, 9 (11). DOI: 10.1371/journal.pone.0112751.
[49] HATAHET F, BOYD D, BECKWITH J. Disulfide bond formation in prokaryotes: history, diversity and design [J]. Biochimica Et Biophysica Acta-Proteins and Proteomics, 2014, 1844 (8): 1402-1414.
[50] HWA K Y, SUBRAMANI B, SHEN S T, et al. An intermolecular disulfide bond is required for thermostability and thermoactivity of beta-glycosidase from Thermococcus kodakarensis KOD1 [J]. Applied Microbiology and Biotechnology, 2014, 98 (18): 7825-7836.
[51] BADIEYAN S, BEVAN D R, ZHANG C. Study and design of stability in GH5 cellulases [J]. Biotechnology and Bioengineering, 2012, 109 (1): 31-44.
[52] YIN X, HU D, LI J F, et al. Contribution of disulfide bridges to the thermostability of a type A feruloyl esterase from Aspergillus usamii [J]. Plos One, 2015, 10 (5). DOI: 10.1371/journal.pone.0126864.
[53] NOTHAFT H, SZYMANSKI C M. Bacterial protein N-glycosylation: new perspectives and applications [J]. Journal of Biological Chemistry, 2013, 288 (10): 6912-6920.
[54] HEBERT D N, LAMRIBEN L, POWERS E T, et al. The intrinsic and extrinsic effects of N-linked glycans on glycoproteostasis [J]. Nature Chemcial Biology, 2014, 10 (11): 902-910.
[55] APWEILER R, HERMJAKOB H, SHARON N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database [J]. Biochimica Et Biophysica Acta-General Subjects, 1999, 1473 (1): 4-8.
[56] FONSECA-MALDONADO R, VIEIRA D S, ALPONTI J S, et al. Engineering the pattern of protein glycosylation modulates the thermostability of a gh11 xylanase [J]. Journal of Biological Chemistry, 2013, 288 (35): 25522-25534.
[57] ZOU S P, XIE L P, LIU Y L, et al. N-linked glycosylation influences on the catalytic and biochemical properties of Penicillium purpurogenum beta-D-glucuronidase [J]. Journal of Biotechnology, 2012, 157 (3): 399-404.
[58] ZOU S P, HUANG S, KALEEM I, et al. N-glycosylation enhances functional and structural stability of recombinant beta-glucuronidase expressed in Pichia pastoris [J]. Journal of Biotechnology, 2013, 164 (1): 75-81.
[59] ZHU J, LIU H, ZHANG J, et al. Effects of Asn-33 glycosylation on the thermostability of Thermomyces lanuginosus lipase [J]. Journal of Applied Microbiology, 2014, 117 (1): 151-159.
[60] HAN M H, WANG X F, DING H Y, et al.The role of N-glycosylation sites in the activity, stability, and expression of the recombinant elastase expressed by Pichia pastoris [J]. Enzyme and Microbial Technology, 2014, 54: 32-37.
[61] SHENTAL-BECHOR D, LEVY Y. Effect of glycosylation on protein folding: a dose book at thermodynamic stabilization [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105 (24): 8256-8261.
[62] SKROPETA D. The effect of individual N-glycans on enzyme activity [J]. Bioorganic & Medicinal Chemistry, 2009, 17 (7): 2645-2653.
[63] PIIRAINEN M A, DE RUIJTER J C, KOSKELA E V, et al. Glycoengineering of yeasts from the perspective of glycosylation efficiency [J]. New Biotechnology, 2014, 31 (6): 532-537.
[64] HAN M H, WANG X F, YAN G L, et al. Modification of recombinant elastase expressed in Pichia pastoris by introduction of N-glycosylation sites [J]. Journal of Biotechnology, 2014, 171: 3-7.
Foundation item: supported by the National Natural Science Foundation of China (21506011, 21425624, 21176028).
Advances in enzyme stability modification
FENG Xudong, Lü Bo, LI Chun
(School of Life Science, Beijing Institute of Technology, Beijing 100081, China)
Abstract:Enzymes play an increasingly important role in diverse industrial fields such as food, pharmacy and fine chemistry. However, most of the enzymes require mild reaction conditions to maintain the activity, and they have poor tolerance towards heat, acid and salt under stressful conditions in real applications. Thus, the enzymes are very labile to lose their activity, severely limiting their applications. Therefore, it is critical and also challenging to engineer enzymes for higher stability. In this paper, the progress in enzyme stability modification is summarized from perspectives of chemical decoration and molecular modification. The molecular modification is illustrated with regards to directed evolution, semi-rational, ration design and glycosylation, where the glycosylation as a new tool to improve enzyme stability is briefly reviewed.
Key words:biochemical engineering; biocatalysis; enzyme; stability; molecular modification; glycosylation
Corresponding author:Prof. LI Chun, lichun@bit.edu.cn
基金項目:國家自然科學基金項目(21506011,21425624,21176028)。
中圖分類號:Q 816
文獻標志碼:A
文章編號:0438—1157(2016)01—0277—08
DOI:10.11949/j.issn.0438-1157.20151025