原琨 李楊
摘要:指出了橋梁健康監測系統中的傳感器數據處理存在的問題,提出了超聲波在橋梁監測中的使用及數據處理方法。通過超聲波技術在相關工業領域的應用現狀,分析驗證了超聲波傳感器在橋梁監測中的可行性、抗噪聲干擾的優勢以及數據處理的可靠性,為橋梁內部鋼筋健康狀況提供一種新的無損監測方法。
關鍵詞:橋梁;健康監測;超聲波;傳感器;鋼筋;多源識別
中圖分類號:TU112.7 文獻標識碼:A 文章編號:1674-9944(2016)06-0143-04
1 前言
一直以來政府和公眾都對橋梁的健康安全狀況給予高度關注,如今無論國內還是國外的諸多橋梁都存在不同的安全隱患。在中國,橋梁的建設速度受到質量控制滯后的制約,每年均有橋梁倒塌事故的發生,造成難以挽回的重大的人員傷亡和經濟損失。自1985年起,不同規模的橋梁健康監測系統開始在國外出現并運行。20世紀90年代起我國也開始在某些大型的橋梁上安裝規模各異的橋梁安全監測系統,例如香港汲水門大橋,青馬大橋和汀九大橋,內地的江陰長江大橋和上海徐浦大橋等。
2 橋梁健康監測技術現狀分析
針對振動模態分析技術,當前國內外在橋梁健康監測系統的提出和應用方面獲得的主要成果是:通過進行強迫橋梁振動的試驗,判斷出局部結構發展對模態參數的影響。根據可變荷載、恒荷載,以及支承地基對橋梁健康狀態的影響,驗證了在橋梁健康自動監測中使用環境振動法的可行性;通過獲取數據對計算模型進行修正,根據振型、頻率、振型曲率、應變振型等改變量,開發出不同類型的定位技術和損傷檢測技術;在數據處理上主要有MAC法、COMAC法、柔度矩陣法、矩陣攝動修正法、非線性迭代法以及神經元網絡法等。這些方法在一定范圍內能夠發揮較為積極的效果,但隨著橋梁健康監測系統的不斷研發存在一系列問題:如未能實現最優點傳感器的鋪設,且抗干擾性差,易受外界環境的影響;噪聲、風雨的干擾導致收集到的數據存在較大誤差,從而使數據處理的難度大大提高;未能實現橋梁病害的自動識別。
筆者針對這些問題,提出了超聲波傳感器在橋梁監測中的應用,解決了傳感器鋪設時尋求最優點的問題,提高了傳感器的成活率,同時針對超聲波傳感器收集到的數據建立了簡單易行的數據處理及多源識別系統。
3 超聲波傳感器的工作原理及監測可行性
應用超聲波技術監測橋梁內部的鋼筋健康狀況的超聲波監測法屬于無損監測。超聲波監測法對橋梁構件進行宏觀缺陷檢測并進而就構件的變形損傷進行評價。橋梁服役期間,由于荷載風雨雪等的影響所有結構構件都會面臨程度不同的累積損傷,通過無損檢測技術方法的應用可以獲得橋梁結構構件的內部鋼筋的健康狀態信息,從而與原始狀態的鋼筋進行對比,以判斷累積損傷對鋼筋結構的改變。
超聲波監測法是一種不受光照溫度電磁場的非接觸式測量方法,已被廣泛用于醫學監測、高精密儀器的監測、軍事導航等領域。超聲波是一種高于20kHz的機械振動,能量集中,指向性好,有較強的穿透本領,在遇到兩種介質的分界面時會產生類似光波的反射折射現象。因此對鋼筋混凝土構件發射超聲波,收集對面接收器收集的時間數據,經過數據處理可形成構件內部鋼筋的立體形態,從而分析其破壞程度,監測其服役情況,及時做好防御,整治工作。
超聲波監測系統由超聲波發射器,超聲波接收器,數據采集控制站,數據處理模塊組成。超聲波發射器即超生波電源,其功能是用來制造超聲頻電能同時為超聲換能器裝置提供電源。超聲波接收器的工作原理是指傳感器接收聲信號,傳感器一般都是壓電陶瓷,聲波信號達到壓電陶瓷上,一旦有機械振動,壓電陶瓷能靈敏的將這一機械振動轉換為電信號,這樣就能實現了超聲信號的監測。壓電陶瓷通過特殊的工藝和切割,有一固定的諧振頻率和帶寬,也就是每一片壓電陶瓷都有其對某一頻率最為敏感,且有一定的帶寬,所以能制作出不同峰值頻率和帶寬的傳感器,以適應不同的監測要求。
橋梁的主要材料為鋼筋混凝土,在鋼筋混凝土結構構件中,鋼筋達到屈服時會產生很大的塑性變形,構件會出現較大的變形和過寬的裂縫,以致無法滿足正常使用的要求。鋼筋按其力學性能的不同可分為有明顯屈服點的鋼筋即軟鋼和沒有明顯屈服點的鋼筋即硬鋼,其應力一應變關系如圖1所示。
由圖1可知當鋼筋承受較大的應力發生破壞時會產生較大的變形,鋼筋鋪設在混凝土內部,鋼筋的密度與混凝土的密度差很大,超聲波在其中傳播的速度會發生改變,從而導致接收到超聲波的時間發生變化。故可通過超聲波傳感器監測橋梁中鋼筋的變形來實現對橋梁鋼筋混凝土結構構件的健康監測。
4 超聲波健康監測工作流程
4.1 傳感器的工作程序及安裝方式
根據監測的需要設計安裝溝槽。讀取圖紙中鋼筋混凝土中的受力鋼筋的位置,在其平行部位預留溝槽。橋梁跨度較大時,分段進行。溝槽的寬度根據超聲波發射器及超聲波接收器的大小設計。溝槽要求光滑平整不影響傳感器的正常工作。健康監測系統傳感器工作程序如圖2。
在橋梁上的溝槽上安裝滑輪小車(自動化且能遠程指揮),將超聲波傳感器分別安裝在每一段上的滑輪小車上,使其在溝槽內能夠按照已經設計好的運行軌道移動,從而用較少的傳感器實現對橋梁內部鋼筋結構的全面監測。對小車及所監測的鋼筋及所在軌道進行編號(表1),并根據實際情況與要求設定各個小車的運行周期。
圖3中,M′、N′、M″、N″分別為所設溝槽;P是安裝超聲波發射器的遙控小車所在位置;Q是安裝超聲波接收器的遙控小車所在位置,在儀器運行階段PQ的連線必須與鋼筋所在直線MN保持垂直。將接收到的數據傳送到數據存儲器中,并進行數據處理。
4.2 數據存儲
采用二元數組的形式對數據進行存儲(表2和表3)。
4.3 數據處理及多源識別
在進行調試時,根據鋼筋混凝土試件的不同,橋梁所處的不同環境,選擇不同峰值頻率和帶寬的傳感器,以適應不同的監測要求。
采集到的數據均是超聲波的傳遞時間(t1,t2,t3,…,tn),分別就理想狀態與試驗狀態的數據模型進行分析。
(1)理想狀態(假設鋼筋混凝土構件內部的混凝土攪拌絕對均勻,1dm2驗小塊的密度能夠保持一致性)。
橋梁建成未運營時:采集原始數據組(t1,t2,t3,…,fn)則有(t1=t2=t3=…=tn),安裝超聲波接收器的遙控小車從M′運行到N′視為一個運行周期,通過一元一次方程模擬的鋼筋狀態示意圖(圖4)。
鋼筋發生一定程度的彎折時:采集數據組(t1,t2,t3,……tn……)則有(t1=t2=t3,t34不等于t35但連續變化……),并與原始數據組進行比較,通過一元一次方程模擬的鋼筋狀態示意圖(圖5)。
由圖4、5可知,有一段鋼筋發生了彎折,且根據小車在第t3,t4時刻所在的位置,估測出鋼筋的形變位置。
(2)試驗狀態(鋼筋混凝土構件內部的混凝土攪拌達不到絕對均勻,1dm3的試驗小塊的密度有輕微差別)。橋梁建成未運營時:采集原始數據組(t1,t2,t3,……tn……)則有(t1,t2,t3,……tn……不相等但呈現連續性變化),裝超聲波接收器的遙控小車從M′運行到N′視為一個運行周期,通過一元一次方程模擬的鋼筋變形狀態如圖6。
將基礎數據保存在數據庫中,同時監測各種破壞的破壞形式從而形成圖像,建立破壞時的數據庫形成各種破壞模型。監測運營后的橋梁情況與真實的初始數據進行比較,建立如圖7的比較圖像。
當監測識別存在偏差時,與各種破壞的破壞圖像比較,尋求相似度接近度最高的模型,從而分析橋梁的實際變形,做出正確的損傷判斷。
上述方法僅能監測鋼筋的上下變形,通過安裝多傳感器即在構件的上下位置同時安裝一套儀器,實現對鋼筋的前后變形監測,通過對兩組數據的合成,實現鋼筋的三維立體實測圖像,如圖8、9所示。
與單一超聲波系統比較,采用多傳感器監測的健康系統能夠實現更加立體和全方位的監測視角,提高健康診斷的準確性和可靠性,得到精確的目標距離方位信息。
4.4 超聲波健康監測系統的優勢
主要優勢體現在以下幾點:鋪設在橋梁結構的外部,便于安裝維修;不用尋求一般傳感器的最優鋪設位置,通過溝槽的設計,能夠實現對橋梁內部鋼筋的全面監測。且對混凝土結構無損傷;使用時受外界噪聲影響較小,得到的數據精確度更高,提高了數據的利用率,降低了數據處理的難度;超聲波技術基于傳感器原理,可以進行多源數據的擴充和信息系統處理能力的進一步提高,為橋梁健康監測提供了基礎技術支撐平臺。
5 結語
以超聲波作為橋梁健康監測的傳感設備還處于初級階段,一方面要投入專用檢測設備的研發,同時要加大數據處理系統的軟件開發工作。超聲波傳感器的快速發展,對大型工程結構的無損監測與信息技術的結合,提出了一種新的監測技術和數據收集形式。