999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

The Singularly Perturbed Problems for Nonlinear Nonlocal Disturbed Evolution Equations with Two Parameters?

2016-05-22 02:44:12FENGYihuWUQinkuanXUYonghongMOJiaqi
工程數學學報 2016年4期

FENG Yi-hu,WU Qin-kuan,XU Yong-hong,MO Jia-qi

(1-Department of Electronics and Information Engineering,Bozhou College,Bozhou,Anhui 236800;2-Department of Mathematics&Physics,Nanjing Institute of Technology,Nanjing,Jiangsu 211167;3-Department of Mathematics&Physics,Bengbu College,Bengbu,Anhui 233030;4-Department of Mathematics,Anhui Normal University,Wuhu,Anhui 241003)

1 Introduction

The nonlinear singularly perturbed disturbed evolution equations are a very attractive target in the physical and engineering mathematics etc.Many approximate methods have been developed,including the boundary layer methods,to solve the equations.Recently,many scholars have done a great deal of work on this topic,such as de Jager and Jiang[1],Barbu and Morosanu[2],Hovhannisyan and Vulanovic[3],Graef and Kong[4],Barbu and Cosma[5],Bonfohet al[6],Fayeet al[7],Samusenko[8],Liu[9]and so on.Using the singular perturbation and other methods Moet al[10-19]also considered a class of singularly perturbed nonlinear problems.In this paper,using the special and simple singularly perturbed theory,we study a class of the nonlinear initial boundary value problems.

Now we consider the nonlocal singularly perturbed disturbed evolution equations initial boundary value problem with two parameters as follows

where

x=(x1,x2,···,xn)∈?,? denotes a bounded region inRn,?? signifies a boundary of? for classC1+α(α∈(0,1))is H¨older exponent,T0is a large enough positive constant,μf(t,x,Tu)is a disturbed term,Lis a uniformly elliptic operator,Tis a integral operator,andKis a continuous function.

We need the following hypotheses:

[H1]:σ=ε/μ→0 asε→0;

[H2]: The second order partial derivations ofαij,βiwith regard toxare H¨older continuous,andgandhiwith regard tot,xare H¨older continuous,with regard toε,μand they are sufficiently smooth functions in correspondence ranges;

[H3]:f(t,x,v)is a sufficiently smooth bounded function with regard to variables in correspondence ranges andf(t,x,v)≤?c<0,wherec>0.

2 Construct outer solution

From hypothesis[H3]and the theory of Fredholm integral equation,the reduced problem for the original problem has a solution.

LetU(t,x)be the outer solution to the problem(1)–(4),and let

Substituting(5)and(6)into(1),developingfinεandμ,equating coefficients of like powers ofεiμj,respectively,fori,j=0,1,···,i+j?=0,we obtain

where

In the above and below equations,the values of terms for the negative subscript are zeroes.From theU00and(6),(7),we obtain the outer solution to the original problem as

But it may not satisfy the boundary and initial conditions(2)–(4),so that we need to construct the boundary layer and initial layer functions.

3 Construct boundary layer term

Set up a local coordinate system(ρ,?)as[10],where?=(?1,?2,···,?n?1).In the neighborhood of?? :0≤ρ≤ρ0,

where

and the constructions of coefficientsani,aij,an,ajare omitted.

We lead into the variables of multiple scales[1,2]in 0≤ρ≤ρ0:whereh(ρ,?)is a function to be determined.For convenience,we still substituteρforbelow.From(9),we have

where

and the constructions ofK11andK12are omitted,too.

Lethρ= √and the solutionuof the original problem(1)–(4)be

whereVis a boundary layer term.Substituting(11)into(1),(2),we have

Substituting(8),(14)and(10)into(12),(13),expanding nonlinear terms inσandμ,and equating the coefficients of like powers ofσiμj,respectively,fori,j=0,1,···,we obtain

whereGij,i=0,1,···,i+j?=0 are determined functions.From the problems(15)and(16),we havev00.Fromv00and(17)and(18),we can obtain solutionsvij(i,j=0,1,···,i+j?=0).

From the hypotheses,it is easy to see thatvij(i=0,1,···)possesses boundary layer behavior

whereδij>0,i,j=0,1,···are constants.

Letis a sufficiently smooth function in 0≤ρ≤ρ0,which satisfies:ψ(ρ)=1,as 0≤ρ≤(1/3)ρ0andψ(ρ)=0,asρ≥(2/3)ρ0.

For convenience,we still substitutevijforas below.Then from(14)we have the boundary corrective termVnear??.

4 Construct initial layer term

The solutionuof the original problem(1)–(4)is

whereWis an initial layer term.Substituting(20)into(1)–(4),we have

We lead into a stretched variable[1,2]:τ=t/εand let

Substituting(8),(14),(10)and(25)into(21)–(24),expanding nonlinear terms inεandμ,and equating the coefficients of like powers ofεiμj,respectively,fori,j=0,1,···,we obtain

whereare determined functions.From the problems(26)–(29),we havew00,Fromw00and the(30)–(33),we can obtain solutionswij,i,j=0,1,···,i+j?=0 successively.

From the hypotheses,it is easy to see thatwij,i,j=0,1,···,possesses boundary layer behavior

whereare constants.

Letfor convenience,we still substitutebelow.Then from(25)we have the initial corrective termW.

From(8),(14),(25),we obtain the formal asymptotic expansion of solution for the nonlinear nonlocal singularly perturbed disturbed evolution equations initial boundary value problem with two parameters(1)–(4):

5 The main result

Now,we prove that the expansion(35)is uniformly valid in ? and we have the following theorem:

TheoremUnder the hypotheses[H1]–[H3],there exists a solutionu(t,x)of the nonlinear nonlocal singularly perturbed disturbed evolution equations initial boundary value problem with two parameters(1)–(4)and holds the uniformly valid asymptotic expansion(35)for

ProofWe can prove that(35)is a uniformly valid asymptotic expansion[1,2].

We get the remainder termR(t,x)the initial boundary value problem(1)–(4).Let

where

Using(36)we obtain

As to the proof of the validity of the approximation(35),it is possible to use the fi xed point theorem(see[1,2]).

The linearized di ff erential operatorreads

and therefore

where 0<θ<1.For fixedε,the normed linear spaceNis chosen as

with norm

and the Banach spaceBis

with norm

From the hypotheses we may show that the condition

of the fixed point theorem is fulfilled,wherel?1is independent ofεandμ,and thusL?1is continuous.The Lipschitz condition of the fixed point theorem becomes

whereC1,C2andCare constants independent ofεandμ,this inequality is valid for all

p1,p2in a ballKN(r)with∥r∥≤1.Finally,we obtain the result that the remainder term exists and moreover

From(36),we obtain

The proof of the Theorem is completed.

References:

[1]de Jager E M,Jiang F R.The Theory of Singular Perturbation[M].Amsterdam:North-Holland Publishing Company,1996

[2]Barbu L,Morosanu G.Singularly Perturbed Boundary-value Problems[M].Basel:Birkhauserm Verlag AG,2007

[3]Hovhannisyan G,Vulanovic R.Stability inequalities for one-dimensional singular perturbation problems[J].Nonlinear Studies,2008,15(4):297-322

[4]Graef J R,Kong L.Solutions of second order multi-point boundary value problems[J].Mathematical Proceedings of the Cambridge Philosophical Society,2008,145(2):489-510

[5]Barbu L,Cosma E.Elliptic regularizations for the nonlinear heat equation[J].Journal of Mathematical Analysis and Applications,2009,351(1):392-399

[6]Bonfoh A,Grassrlli M,Miranville A.Intertial manifolds for a singular perturbation of the viscous Cahn-Hilliiard-Gurtin equation[J].Topological Methods in Nonlinear Analysis,2010,35(1):155-185

[7]Faye L,Frenod,E,Seck D.Singularly perturbed degenerated parabolic equations and application to seabed morphodynamics in tided environment[J].Discrete and Continuous Dynamical Systems,2011,29(3):1001-1030

[8]Samusenko P F.Asymptotic integration of degenerate singularly perturbed systems of parabolic partial dif f erential equations[J].Journal of Mathematical,2013,189(5):834-847

[9]Liu S D.Spike layer solutions of some quadratic singular perturbation problems with high-order turning points[J].Mathematica Applicata,2014,27(1):50-51

[10]Mo J Q.Singular perturbation for a class of nonlinear reaction dif f usion systems[J].Science in China,Series A,1989,32(11):1306-1315

[11]Mo J Q,Lin W T.Asymptotic solution of activator inhibitor systems for nonlinear reaction dif f usion equations[J].Journal of Systems Science and Complexity,2008,20(1):119-128

[12]Mo J Q.A class of singularly perturbed dif f erential-dif f erence reaction dif f usion equations[J].Advances in Mathematics,2009,38(2):227-230

[13]Mo J Q.Approximate solution of homotopic mapping to solitary for generalized nonlinear KdV system[J].Chinese Physics Letters,2009,26(1):010204-1-010204-4

[14]Mo J Q.A variational iteration solving method for a class of generalized Boussinesq equations[J].Chinese Physics Letters,2009,26(6):060202-1-060202-3

[15]Mo J Q.Homotopic mapping solving method for gain fluency of a laser pulse amplifier[J].Science in China Series G:Physics,Mechanics and Astronomy,2009,52(7):1007-1010

[16]Mo J Q,Lin W T.Asymptotic solution for a class of sea-air oscillator model for El-Nino-southern oscillation[J].Chinese Physics,2008,17(2):370-372

[17]Mo J Q,Lin W T,Wang H.A class of homotopic solving method for ENSO model[J].Acta Mathematica Scientia,2009,29(1):101-110

[18]Mo J Q,Chen H J.The corner layer solution of Robin problem for semilinear equation[J].Mathematica Applicata,2012,25(1):1-4

[19]Mo J Q,Lin Y H,Lin W T,et al.Perturbed solving method for interdecadal sea-air oscillator model[J].Journal of Geographical Sciences,2012,22(1):42-47

主站蜘蛛池模板: 国产精品久久精品| 国产swag在线观看| 91免费片| 无码免费的亚洲视频| 免费一级无码在线网站| 精品久久久久成人码免费动漫| 日韩高清一区 | 久久综合国产乱子免费| 永久免费无码日韩视频| 亚洲男人天堂2018| 久久免费精品琪琪| 国产精品久线在线观看| 中文字幕在线观看日本| 国产乱肥老妇精品视频| 无码内射在线| 欧美另类一区| 国产乱子伦精品视频| 欧美高清国产| 久久综合丝袜日本网| 成人无码一区二区三区视频在线观看| 国产综合网站| 午夜丁香婷婷| 全部免费毛片免费播放| 国产女人在线视频| 欧美亚洲中文精品三区| 一级做a爰片久久毛片毛片| 国产在线观看人成激情视频| 国产成人AV大片大片在线播放 | 狠狠ⅴ日韩v欧美v天堂| 亚洲高清无码久久久| 无码中文字幕乱码免费2| 精品视频第一页| 香蕉在线视频网站| a毛片在线播放| 永久免费精品视频| 久久99久久无码毛片一区二区| 亚洲欧美一区在线| 国产成人高清精品免费| 日韩 欧美 小说 综合网 另类| 粉嫩国产白浆在线观看| 久久福利片| 久久6免费视频| 在线观看91精品国产剧情免费| 国产午夜一级毛片| 亚洲日韩在线满18点击进入| 99草精品视频| 99热这里只有免费国产精品| 久久视精品| 人人妻人人澡人人爽欧美一区| 国产精品尤物铁牛tv| 91丝袜乱伦| 99热国产这里只有精品9九| 婷婷六月综合| 免费在线a视频| 亚洲欧美在线综合图区| 伊人久综合| 国内黄色精品| 国产精品福利尤物youwu| 久久婷婷六月| 老色鬼欧美精品| 黑色丝袜高跟国产在线91| 亚洲国产欧美目韩成人综合| 亚洲一区二区三区中文字幕5566| 精品国产免费观看| 在线观看免费人成视频色快速| 美女国产在线| 久久国产精品夜色| 国产aⅴ无码专区亚洲av综合网| 国产成人91精品免费网址在线| 久久人体视频| 四虎国产精品永久一区| 中文字幕免费播放| 青青青伊人色综合久久| 精品伊人久久久香线蕉| 国产一级做美女做受视频| 国产精女同一区二区三区久| 国产内射在线观看| 亚洲一区二区三区国产精华液| 亚洲成人免费看| 成人久久18免费网站| av无码一区二区三区在线| 久久精品一卡日本电影|