王 靜,屈樹新,童其磊,2,程 祥,翁 杰
(1. 西南交通大學 材料科學與工程學院,材料先進技術(shù)教育部重點實驗室, 成都 610031;2. 西南交通大學 機械工程學院, 成都 610031)
?
摩擦對載阿侖膦酸鈉超高分子量聚乙烯藥物釋放影響研究
王靜1,屈樹新1,童其磊1,2,程祥1,翁杰1
(1. 西南交通大學 材料科學與工程學院,材料先進技術(shù)教育部重點實驗室, 成都 610031;2. 西南交通大學 機械工程學院, 成都 610031)
摘要:前期研制了載抑制骨溶解藥物阿侖膦酸鈉(ALN)的超高分子量聚乙烯(UHMWPE),希望通過ALN抑制骨溶解。載阿侖膦酸鈉超高分子量聚乙烯(UHMWPE-ALN)在應用中伴隨著摩擦,而摩擦對其藥物釋放的影響尚不清楚。采用球-盤往復滑動摩擦磨損試驗儀,研究了不同摩擦工況(摩擦副材料、法向載荷和潤滑液)對UHMWPE-ALN藥物釋放的影響及其與摩擦學性能的關(guān)系。結(jié)果表明,UHMWPE-ALN摩擦過程中ALN釋放呈零級釋放規(guī)律;摩擦工況中的法向載荷和摩擦副材料比潤滑液對ALN釋放的影響大;摩擦學性能顯示ALN釋放與體積磨損量呈正相關(guān)性。
關(guān)鍵詞:超高分子量聚乙烯;阿侖膦酸鈉;摩擦學性能;藥物釋放
0引言
超高分子量聚乙烯(Ultra-high molecular weight polyethylene,UHMWPE)因具有良好的耐磨性和生物相容性而與金屬或陶瓷組合,構(gòu)成目前臨床普遍使用的人工關(guān)節(jié)[1-3]。但人工關(guān)節(jié)在患者正常運動中不可避免產(chǎn)生的磨屑可誘發(fā)機體產(chǎn)生一系列不良生物學反應,引發(fā)骨溶解,最終導致人工關(guān)節(jié)松動甚至失效[3-4]。人工關(guān)節(jié)組件材料中UHMWPE是最薄弱和相對不耐磨的材料[5-7],因此UHMWPE磨屑在人工關(guān)節(jié)磨屑中所占比例最大。且據(jù)文獻報道UHMWPE磨屑較金屬磨屑更易引起骨溶解及人工關(guān)節(jié)松動[8-10]。目前常采用增強人工關(guān)節(jié)組件材料耐磨性的方法減少磨屑的產(chǎn)生,如UHMWPE的改性[11-14]、優(yōu)化摩擦副材料[15-18]和采用人工潤滑系統(tǒng)[19-20]等;或者通過口服或局部注射抑制骨溶解藥物(如骨保護素、雌激素和膦酸鹽等),減輕磨屑引起的生物學反應,預防或抑制骨溶解的發(fā)生[21-23]。這些措施雖然提高了人工關(guān)節(jié)的使用壽命,但磨屑所導致的骨溶解和人工關(guān)節(jié)松動依然存在。
本課題組前期研制了載抑制骨溶解藥物阿侖膦酸鈉(Alendronate sodium,ALN)的UHMWPE,希望UHMWPE-ALN作為人工關(guān)節(jié)組件植入人體后,ALN可隨在正常運動中不可避免產(chǎn)生的磨屑釋放到假體周圍組織,以降低磨屑危害,從而有效防止人工關(guān)節(jié)松動[24]。采用磷酸鹽緩沖液浸泡UHMWPE-ALN磨屑研究其體外藥物釋放動力學,發(fā)現(xiàn)其藥物釋放包括前期突釋、快速釋放和穩(wěn)定釋放3個階段,主要通過擴散作用釋放藥物,但僅能釋放其中35%~45%的藥物[24]。而UHMWPE-ALN磨屑中剩余的ALN能否釋放及其釋放影響因素和釋放動力學特征尚不清楚。另外若UHMWPE-ALN作為人工關(guān)節(jié)組件,在臨床應用中將一直伴隨著摩擦,采用傳統(tǒng)體外藥物釋放研究模型無法完全模擬UHMWPE-ALN在摩擦過程中的藥物釋放動力學。因此,本課題組前期初步探索了UHMWPE-ALN在單一摩擦工況下的藥物釋放情況,結(jié)果表明摩擦對其藥物釋放有促進作用[25]。然而摩擦工況包括摩擦副材料、法向載荷和潤滑液等一系列較復雜的因素,不僅影響UHMWPE-ALN在使用過程中摩擦學行為,且可能影響UHMWPE-ALN的藥物釋放,因此尚需研究不同摩擦工況對UHMWPE-ALN藥物釋放的影響。
本文采用球-盤往復滑動摩擦磨損試驗儀,分別選擇臨床廣泛使用的人工關(guān)節(jié)摩擦副材料(316L不銹鋼和Al2O3陶瓷)、不同法向載荷(30和50 N)和潤滑液(去離子水和生理鹽水)為摩擦工況研究UHMWPE-ALN藥物釋放和摩擦學性能。
1實驗
1.1試劑及儀器
UHMWPE粉末([CH2CH2]n),購自山西中科天罡科技開發(fā)有限公司,分子量為(5±0.5)×106g/mol,符合臨床植入用UHMWPE的要求[26]。ALN(C4H12NNaO7P2·3H2O),購自江蘇響水縣現(xiàn)代化有限公司。水合茚三酮(C9H4O3·H2O,ninhydrin)、碳酸氫鈉(NaHCO3)和無水乙醇(CH3CH2OH)均為分析純,購自成都市科龍化工試劑廠。
熱壓機(Model NO.3925,Carver Inc.,美國);球-盤往復滑動摩擦磨損試驗儀(MFT-R4000,中國科學院蘭州化學物理研究所,中國);酶標儀(μ-Quant,Bio-Tek,美國);臺階儀(XP-2,Ambios Technology,美國)。
1.2UHMWPE-ALN制備及摩擦副材料
將0.8 g ALN充分溶解于20 mL去離子水中,與含有80 g UHMWPE粉末的無水乙醇混懸液混合均勻,干燥,熱壓成型,在溫度180 ℃,壓力10 MPa下保持30 min,室溫自然冷卻,試樣記作UHMWPE-ALN。UHMWPE-ALN的屈服強度為(25±1.04) MPa,拉伸強度為(37.9±1.81) MPa,斷裂伸長率為(352.5±35.18)%[27],滿足ASTM F648-04標準所規(guī)定UHMWPE植入體的力學性能要求。
選用人工關(guān)節(jié)常見的316L不銹鋼(中國廣東太鋼不銹鋼材料有限公司購置)和Al2O3陶瓷(德國CeramTec公司惠贈)球頭作摩擦副,直徑均為28 mm,密度分別為7.39和4.37 g/cm3,彈性模量分別為196和358 GPa,泊松比分別為0.30和0.24,表面粗糙度分別為0.020和0.002 μm。
1.3方法
1.3.1體外摩擦對藥物釋放影響研究
將UHMWPE-ALN試樣切為15 mm×15 mm×8 mm,于無水乙醇中超聲清洗、干燥備用。采用球-盤往復滑動摩擦磨損試驗儀(圖1(a))體外摩擦,研究UHMWPE-ALN在不同摩擦工況(表1)下的藥物釋放和摩擦學性能。摩擦往復長度5 mm,滑動頻率2 Hz,平均滑動速度20 mm/s,試驗溫度(20±5) ℃。
1.3.2藥物釋放檢測
UHMWPE-ALN在各組摩擦工況下進行300 h的摩擦試驗,每20 h收集和替換一次潤滑液,采用水合茚三酮反應法檢測潤滑液中ALN的濃度[28],原理如圖1(b)所示。ALN濃度乘以潤滑液的體積即為該時間間隔內(nèi)ALN的釋放量,ALN釋放率由式(1)計算

(1)

圖1 UHMWPE-ALN體外摩擦示意圖及ALN與水合茚三酮反應原理[29]
Fig 1 The schematic diagram ofinvitrowear tests of UHMWPE-ALN and the reaction mechanism between alendronate sodium and ninhydrin[29]

表1 摩擦試驗參數(shù)
1.3.3摩擦學性能分析
UHMWPE-ALN體外摩擦試驗中,摩擦系數(shù)在跑合階段(約3 h)隨時間變化明顯而后逐漸趨于平穩(wěn)。摩擦磨損試驗儀實時記錄的摩擦系數(shù)為動態(tài)摩擦系數(shù),前20 h所有實時采集摩擦系數(shù)的平均值為靜態(tài)摩擦系數(shù)。
UHMWPE-ALN在各組摩擦工況下摩擦100,200和300 h后,分別將其取出于無水乙醇中超聲清洗、干燥,臺階儀檢測磨痕橫斷面輪廓。試樣各階段體積磨損量ΔV由式(2)計算

(2)
其中,S為磨痕橫斷面輪廓曲線的面積積分,L為往復長度。
1.3.4統(tǒng)計學分析
所有實驗組設3個平行試樣,結(jié)果表示為平均值±標準偏差,并用t-檢驗進行統(tǒng)計學分析。p<0.05,顯著性差異;p<0.01,極顯著性差異。
2結(jié)果與討論
2.1摩擦對藥物釋放影響
圖2為UHMWPE-ALN在各組摩擦工況下300 h體外摩擦中ALN累積釋放質(zhì)量和時間關(guān)系曲線。由圖2可見,同一時間點UHMWPE-ALN/316L-50N-Water的ALN累積釋放質(zhì)量均為最大,隨后依次是UHMWPE-ALN/316L-30N-Saline、UHMWPE-ALN /316L-30N-Water和UHMWPE-ALN/Al2O3-30N-Water。UHMWPE-ALN/316L-30N-Water和UHMWPE-ALN/316L-30N-Saline的ALN累積釋放質(zhì)量在前160 h比較接近,隨后逐漸開始產(chǎn)生差異。

圖2UHMWPE-ALN往復滑動摩擦過程中ALN累積釋放質(zhì)量
Fig 2 The cumulative mass of ALN release from UHMWPE-ALN during the reciprocating sliding friction processes
表2為UHMWPE-ALN在各組摩擦工況下300 h體外摩擦過程的藥物釋放分析。各組摩擦工況下300 h體外摩擦仍是UHMWPE-ALN/316L-50N-Water的ALN釋放總質(zhì)量和釋放率最大,隨后依次是UHMWPE-ALN/316L-30N-Saline、UHMWPE-ALN/316L-30N-Water和UHMWPE-ALN/Al2O3-30N-Water。各組摩擦工況下UHMWPE-ALN在前20 h藥物釋放差異小,但隨摩擦時間延長,不同摩擦工況導致不同的磨損量而影響ALN釋放質(zhì)量,故不同摩擦工況對ALN釋放的影響不同。結(jié)合圖2曲線可知,摩擦工況中的法向載荷和摩擦副材料對UHMWPE-ALN藥物釋放的影響較大,而潤滑液對其影響較小。
由表2可知,UHMWPE-ALN各組摩擦工況下ALN累積釋放質(zhì)量與時間均呈線性增大,且線性相關(guān)系數(shù)均大于0.99,具有良好的線性關(guān)系。據(jù)文獻報道[30],藥物累積釋放量與時間呈一次函數(shù)關(guān)系(式(3)),是零級釋放的特征。故UHMWPE-ALN在體外摩擦過程中ALN釋放呈零級釋放規(guī)律。而本課題組前期的UHMWPE-ALN磨屑體外釋放藥物量與時間呈非線性關(guān)系,存在前期突釋、快速釋放和穩(wěn)定釋放3個階段[24]。UHMWPE-ALN磨屑的體外藥物釋放主要依賴ALN的擴散釋放,而本文中的藥物釋放除UHMWPE-ALN表面的ALN擴散外,主要受摩擦的影響,藥物釋放量隨磨損的增大而增加。本課題組前期的摩擦對UHMWPE-ALN藥物釋放的影響研究表明[25],在摩擦前200 h,潤滑液中ALN的累積釋放質(zhì)量隨時間增長而緩慢增大;從200~300 h時,ALN的釋放速度加快,摩擦對UHMWPE-ALN藥物釋放有促進作用,與本文結(jié)果類似;但其ALN釋放動力學并不完全呈現(xiàn)線性關(guān)系,可能是由于本文檢測藥物釋放量的時間間隔更小。
Q=kt+b
(3)
其中,Q為ALN累積釋放質(zhì)量,t為時間,k為斜率,b為截距。

表2 UHMWPE-ALN藥物釋放分析
注:r為線性相關(guān)系數(shù)。
2.2摩擦學性能
UHMWPE-ALN各組摩擦工況下初期20 h動態(tài)摩擦系數(shù)曲線如圖3(a)所示。UHMWPE-ALN/316L-50N-Water的動態(tài)摩擦系數(shù)最大,UHMWPE-ALN/Al2O3-30N-Water的最小,UHMWPE-ALN/316L-30N-Saline和UHMWPE-ALN/316L-30N-Water的動態(tài)摩擦系數(shù)仍介于兩者之間;同樣的UHMWPE-ALN/316L-50N-Water、UHMWPE-ALN/316L- 30N-Saline、UHMWPE-ALN/316L-30N-Water和 UH MWPE-ALN/Al2O3-30N-Water的靜態(tài)摩擦系數(shù)依次為0.126±0.0016、0.104±0.0031、0.072±0.0021和0.058±0.0022。不同摩擦工況下動態(tài)和靜態(tài)摩擦系數(shù)的大小規(guī)律與相應摩擦工況下的ALN累積釋放量呈正相關(guān)性。
圖3(b)為各組摩擦工況下UHMWPE-ALN摩擦100,200和300 h后體積磨損量。由圖3(b)可知,各組在同一時間點體積磨損量大小關(guān)系為UHMWPE-ALN/316L-50N-Water>UHMWPE-ALN/316L-30N-Saline>UHMWPE-ALN/316L-30N-Water>UHMWPE-ALN/Al2O3-30N-Water。各組摩擦工況下UHMWPE-ALN的體積磨損量大小規(guī)律與ALN釋放質(zhì)量、動態(tài)或靜態(tài)摩擦系數(shù)的相同。各組體積磨損量隨磨損時間延長而增大;將體積磨損量與時間線性擬合,線性相關(guān)系數(shù)都大于0.99,線性關(guān)系良好。這與UHMWPE-ALN在體外摩擦過程中ALN零級釋放規(guī)律一致,說明UHMWPE-ALN體外摩擦藥物釋放規(guī)律受摩擦和磨損量的影響。由不同摩擦工況下UHMWPE-ALN的體積磨損量顯著性差異分析可知,摩擦工況中的法向載荷和摩擦副材料對UHMWPE-ALN體積磨損量的影響較大,而潤滑液對其影響較小。

圖3UHMWPE-ALN摩擦學性能:動態(tài)摩擦系數(shù)(a),體積磨損量(b) (*P<0.05,**P<0.01)
Fig 3 Tribological behavior of UHMWPE-ALN including dynamic friction coefficients (a)and volumetric losses (b)(*P<0.05,**P<0.01)
據(jù)文獻報道[31],摩擦中磨損量與法向載荷呈正相關(guān)性。當法向載荷50 N時,UHMWPE-ALN的磨損量較法向載荷30 N的明顯增大,而磨損形貌的變化是造成摩擦系數(shù)增大的主要原因之一。因此法向載荷50 N時,摩擦系數(shù)較高,結(jié)果表明ALN的累積釋放質(zhì)量較法向載荷30 N的明顯增大,這與摩擦中磨損量與法向載荷呈正相關(guān)性一致。Al2O3陶瓷作為摩擦副時,由于其較不銹鋼具有較好的耐腐蝕性和較小的粗糙度[32],減少了摩擦副間的嚙合作用,降低了摩擦系數(shù)和磨損量,相應地也降低了ALN的累積釋放量。在兩種不同潤滑液中的摩擦試驗中,前160 h兩組的體積磨損量差異較小,相應地ALN釋放量較接近;隨著摩擦時間的延長,生理鹽水潤滑條件會對不銹鋼表面產(chǎn)生較嚴重的腐蝕,增大其表面粗糙度而增大了摩擦副間的嚙合作用,因而生理鹽水組的體積磨損量較去離子水組的更大,相應地兩組ALN累積釋放量的差異逐漸增大。因此,推測在UHMWPE-ALN體外摩擦過程中,ALN的累積釋放量與摩擦和磨損量有關(guān)。由于UHMWPE是一種穩(wěn)定的高分子,在液體環(huán)境中不易溶脹和降解,最初的ALN釋放可能來自于UHMWPE-ALN表層ALN的擴散。隨著摩擦進行UHMWPE-ALN不斷暴露新的磨損表面,磨損表面的ALN又可通過擴散而釋放,因此磨損量大則ALN釋放多。另外磨損量大則產(chǎn)生的磨屑多,進入潤滑液中的UHMWPE-ALN磨屑也可釋放更多的ALN。因此,摩擦及磨損量的增加可促進ALN的釋放。
3結(jié)論
(1)UHMWPE-ALN在體外摩擦過程中ALN釋放動力學呈線性,符合零級釋放規(guī)律。UHMWPE-ALN體外摩擦ALN累積釋放量呈UHMWPE-ALN/316L-50N-Water>UHMWPE-ALN/316L-30N-Saline>UHMWPE-ALN/316L-30N-Water>UHMWPE-ALN/Al2O3-30N-Water趨勢;摩擦工況中的法向載荷和摩擦副材料對UHMWPE-ALN體積磨損量和藥物釋放的影響較潤滑液的更大。
(2)UHMWPE-ALN體外摩擦過程中的動態(tài)或靜態(tài)摩擦系數(shù)和體積磨損量呈UHMWPE-ALN/316L-50N-Water>UHMWPE-ALN/316L-30N-Saline>UHMWPE-ALN/316L-30N-Water>UHMWPE-ALN/Al2O3-30N-Water趨勢,與UHMWPE-ALN的體外摩擦ALN累積釋放量關(guān)系一致。體外摩擦的不同摩擦工況導致不同的磨損量,是影響ALN釋放的重要因素之一。結(jié)果表明摩擦對ALN的釋放具有促進作用。
結(jié)果表明UHMWPE-ALN體外摩擦ALN的釋放行為符合零級釋放規(guī)律,摩擦和磨損量是影響ALN釋放的重要因素之一,將為其進一步臨床應用提供科學依據(jù)。
參考文獻:
[1]Huang Y F, Xu J Z, Li J S, et al. Mechanical properties and biocompatibility of melt processed, self-reinforced ultrahigh molecular weight polyethylene[J]. Biomaterials, 2014, 35(25): 6687-6697.
[2]Puppulin L, Leto A, Hasegawa M, et al. A comparative microstructural study of vitamin-E blended and infused highly crosslinked UHMWPE for total knee arthroplasty[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 35: 247-256.
[3]Schwartz C J, Bahadur S, Mallapragada S K. Effect of crosslinking and Pt-Zr quasicrystal fillers on the mechanical properties and wear resistance of UHMWPE for use in artificial joints[J]. Wear, 2007, 263(7-12): 1072-1080.
[4]Turner A, Okubo Y, Teramura S, et al. The antioxidant and non-antioxidant contributions of vitamin E in vitamin E blended ultra-high molecular weight polyethylene for total knee replacement[J]. Wear, 2014, 31: 21-30.
[5]Xiong L, Xiong D S, Jin J B. Study on tribological properties of irradiated crosslinking UHMWPE nano-composite[J]. Journal of Bionic Engineering, 2009, 6(1): 7-13.
[6]Engh Jr C A, Stepniewski A S, Ginn S D, et al. A randomized prospective evaluation of outcomes after total hip arthroplasty using cross-linked marathon and non-cross-linked Enduron polyethylene liners[J]. The Journal of Arthroplasty, 2006, 21(6 Suppl 2): 17-25.
[7]Pruitt L A. Deformation, yielding, fracture and fatigue behavior of conventional and highly cross-linked ultra high molecular weight polyethylene[J]. Biomaterials, 2005, 26(8): 905-915.
[8]McMullin B T, Leung M Y, Shanbhag A S, et al. Correlating subjective and objective descriptors of ultra high molecular weight wear particles from total joint prostheses[J]. Biomaterials, 2006, 27(5): 752-757.
[9]Ohta M, Hyon S H, Tsutumi S. Control of crystalline orientation to enhance the wear resistance of ultra-high molecular weight polyethylene crystallization cups for artificial joints[J]. Wear, 2003, 255(7-12): 1045-1050.
[10]González-Mora V A, Hoffmann M, Stroosnijder R, et al. Wear tests in a hip joint simulator of different CoCrMo counterfaces on UHMWPE[J]. Materials Science and Engineering: C, 2009, 29(1):153-158.
[11]Martínez-Morlanes M J, Castell P, Alonso P J, et al. Multi-walled carbon nanotubes acting as free radical scavengers in gamma-irradiated ultrahigh molecular weight polyethylene composites[J]. Carbon, 2012, 50(7): 2442-2452.
[12]Wannomae K K, Christensen S D, Micheli B R, et al. Delamination and adhesive wear behavior of alpha-tocopherol-stabilized irradiated ultrahigh-molecular-weight polyethylene[J]. The Journal of Arthroplasty, 2010, 25(4): 635-643.
[13]Oral E, Ghali B W, Rowell S L, et al. A surface crosslinked UHMWPE stabilized by vitamin E with low wear and high fatigue strength[J]. Biomaterials, 2010, 31(27): 7051-7060.
[14]Fasce L, Cura J, del Grosso M, et al. Effect of nitrogen ion irradiation on the nano-tribological and surface mechanical properties of ultra-high molecular weight polyethylene[J]. Surface and Coatings Technology, 2010, 204(23): 3887-3894.
[15]Shi Y, Xiong D S, Zhang J F. Effect of irradiation dose on mechanical and biotribological properties of PVA/PVP hydrogels as articular cartilage[J]. Tribology International, 2014, 78: 60-67.
[16]Kyomoto M, Iwasaki Y, Moro T, et al. High lubricious surface of cobalt-chromium-molybdenum alloy prepared by grafting poly(2-methacryloyloxyethyl phosphorylcholine)[J]. Biomaterials, 2007, 28(20): 3121-3130.
[17]Thorwarth G, Falub C V, Muller U, et al. Tribological behavior of DLC-coated articulating joint implants[J]. Acta Biomaterialia, 2010, 6(6): 2335-2341.
[18]Pei Y N, Xie D, Gui X, et al. The properties of the ultra-high molecular weight polyethylene (UHMWPE) modified by surface metallization and diamond like carbon (DLC) film deposition duplex treatment[J]. Journal of Functional Materials, 2011, 42(3): 459-462.
裴亞楠,謝東,鄶晛,等. 超高分子量聚乙烯表面金屬化及類金剛石薄膜沉積復合處理研究[J]. 功能材料, 2011, 42(3): 459-462.
[19]Gispert M P, Serro A P, Cola?o R, et al. Friction and wear mechanisms in hip prosthesis: comparison of joint materials behaviour in several lubricants[J].Wear, 2006, 260(1-2): 149-158.
[20]Kyomoto M, Moro T, Saiga K, et al. Biomimetic hydration lubrication with various polyelectrolyte layers on cross-linked polyethylene orthopedic bearing materials[J]. Biomaterials, 2012, 33(18): 4451-4459.
[21]Zhu F B, Cai X Z, Yan S G, et al. The effects of local and systemic alendronate delivery on wear debris-induced osteolysis in vivo[J]. Journal of Orthopaedic Research, 2010, 28(7): 893-899.
[22]Aslan A, ?zmeri? A, Bilal ?, et al. Comparative evaluation of clinical effectivity and side effects of two different parenteral agents used in the treatment of osteoporosis[J]. Journal of Rheumatology and Orthopedics, 2014, 1(1): 1-6.
[23]Arabmotlagh M, Pilz M, Warzecha J, et al. Changes of femoral periprosthetic bone mineral density 6 years after treatment with alendronate following total hip arthroplasty[J]. Journal of Orthopaedic Research, 2009, 27(2): 183-188.
[24]Liu X M, Qu S X, Lu X, et al. Time-of-flight secondary ion mass spectrometry study on the distribution of alendronate sodium in drug-loaded UHMWPE[J]. Biomedical Materials, 2009, 4(6):065008.
[25]Yang D, Qu S X, Lin S Z, et al. Preliminary study on the effect of wear process on drug release of ALN-loaded UHMWPE[J]. Applied Surface Science, 2012, 262: 207-211.
[26]Kurtz S M. The UHMWPE handbook: ultra-high molecular weight polyethylene in total joint replacement[M]. New York: Academic Press, 2004:15-19.
[27]Qu S X, Yang D. Study on mechanical properties of UHMWPE carrying alendronate[J]. Journal of Medical Biomechanics, 2009, 24(5): 338-342.
屈樹新, 楊丹. 載阿侖膦酸鈉超高分子量聚乙烯力學性能研究[J]. 醫(yī)用生物力學, 2009, 24(5): 338-342.
[28]Long M L, Huang H L, Sheng Y Q, et al. Determination of alendronate sodium in compound alendronate sodium sustained-release tablets by colorimetry[J]. Journal of Nanhua University (Medical Edition), 2007, 35(1): 101-103.
龍明立,黃紅林,沈元瓊,等.比色法測定復方阿侖膦酸鈉緩釋片中阿侖膦酸鈉的含量[J].南華大學學報醫(yī)學版, 2007, 35(1): 101-103.
[29]Taha E A, Youssef N F. Spectrophotometric determination of some drugs for osteoporosis[J]. Chemical and Pharmaceutical Bulletin, 2003, 51(12): 1444-1447.
[30]Singhvi G, Singh M. Review: in-vitro drug release characterization models[J]. International Journal of Pharmaceutical Studies and Research, 2011, 2(1): 77-84.
[31]Song J, Liu P, Cremens M, et al. Effects of machining on tribological behavior of ultra high molecular weight polyethylene (UHMWPE) under dry reciprocating sliding[J].Wear, 1999, 225-229: 716-732.
[32]Nakahara I, Nakamura N, Nishii T, et al. Minimum five-year follow-up wear measurement of longevity highly cross-linked polyethylene cup against cobalt-chromium or zirconia heads[J]. The Journal of Arthroplasty, 2010, 25(8): 1182-1187.
Study on the effect of wear conditions of reciprocating sliding wear test on drug releasing behavior of UHMWPE loaded with alendronate sodium
WANG Jing1, QU Shuxin1, TONG Qilei1,2, CHENG Xiang1, WENG Jie1
(1. Key Laboratory of Advanced Technologies of Materials, Ministry of Education,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China;2. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China)
Abstract:In our previous study, ultra-high molecular weight polyethylene (UHMWPE) loaded with alendronate sodium (ALN) for anti-osteolysis was developed. The application of UHMWPE-ALN has always been accompanied by friction and wear. However, the influence of friction and wear on drug release of UHMWPE-ALN is still unclear. So the aim of this study is to use a computerized reciprocating ball-on-plate sliding wear apparatus to investigate the effect of different tribological parameters including counterface material, normal load and lubricant on the in vitro drug release and tribological behavior of UHMWPE-ALN. The results showed that during the UHMWPE-ALN wear process the drug release curve of ALN was consistent with zero-order release kinetics. Normal load and counterface material had a greater influence on the drug release behavior of ALN than that of lubricant. The release of ALN was positively correlated with volumetric loss according to the results of tribological properties.
Key words:ultra-high molecular weight polyethylene; alendronate sodium; tribological behavior; drug release
DOI:10.3969/j.issn.1001-9731.2016.03.026
文獻標識碼:A
中圖分類號:TB332;TG115.5+8
作者簡介:王靜(1988-),女,重慶人,在讀碩士,師承屈樹新教授,從事生物材料摩擦研究。
基金項目:國家重點基礎研究發(fā)展計劃(973計劃)資助項目(2012CB933602);國家自然科學基金資助項目(50975239,51372210);高等學校博士學科點專項科研基金資助項目(20130184110023);四川省高校科研創(chuàng)新團隊建設計劃資助項目(14TD0050)
文章編號:1001-9731(2016)03-03140-06
收到初稿日期:2015-04-03 收到修改稿日期:2015-07-24 通訊作者:屈樹新,E-mail: qushuxin@swjtu.edu.cn