張玲 李飛 韋英益 何家康 陳海蘭 胡庭俊 廖玲玲


摘要:【目的】探討山豆根多糖(SSP)對豬繁殖與呼吸綜合征病毒(PRRSV)體外感染RAW264.7細胞存活率及分泌炎性因子水平的影響,為研發出治療豬繁殖與呼吸綜合征(PRRS)的新型獸藥提供參考依據。【方法】以50、100、200和400 μg/mL SSP作用于PRRSV體外感染8 h的RAW264.7細胞,通過MTT法評價SSP對PRRSV感染RAW264.7細胞存活率,ELISA檢測SSP對PRRSV體外感染RAW264.7細胞培養上清液中的炎性因子TNF-α、IL-1β、IL-6、IL-8、IL-10和MCP-1。【結果】PRRSV感染RAW264.7細胞8 h極顯著降低了細胞存活率(P<0.01,下同),而200~400 μg/mL SSP能極顯著升高PRRSV感染RAW264.7細胞存活率。PRRSV感染RAW264.7細胞8 h可極顯著升高細胞分泌TNF-α、IL-1β、IL-6、IL-8、IL-10和MCP-1水平,而SSP能有效降低PRRSV感染RAW264.7細胞分泌上述炎性因子水平,其中以200~400 μg/mL SSP的抑制效果最佳。【結論】SSP通過提高炎癥細胞存活率及抑制其分泌炎性因子水平,從而有效干預PRRSV感染免疫細胞的炎性反應。
關鍵詞: 豬繁殖與呼吸綜合征病毒(PRRSV);山豆根多糖;RAW264.7細胞;存活率;炎性因子
中圖分類號: S858.28 文獻標志碼:A 文章編號:2095-1191(2016)12-2151-06
Abstract:【Objective】The present study investigated effects of Sophora subprostrate polysaccharide(SSP) on cell viabilities and inflammatory cytokines of RAW264.7 cells infected by porcine reproductive and respiratory syndrome virus (PRRSV) in vitro, in order to provide reference for developing new veterinary medicine curing PRRSV. 【Method】SSP was applied to RAW264.7 cells infected with PRRSV in vitro for 8 hours at dose of 50, 100, 200 and 400 μg/mL. Cell viabilities in SSP treated RAW264.7 cells infected by PRRSV in vitro were evaluated by MTT method. ELISA method was used to detect levels of inflammatory cytokines in culture supernatant of RAW264.7 cells, including TNF-α, IL-1β, IL-6, IL-8, IL-10 and MCP-1. 【Result】After eight hours of PRRSV infection, viabilities of RAW264.7 cells were significantly reduced(P<0.01,the same below); 200-400 μg/mL SSP treatment significantly increased cell viabilities of RAW264.7 cells infected by PRRSV. The levels of TNF-α, IL-1β, IL-6, IL-8, IL-10 and MCP-1 were significantly increased in RAW264.7 cells infected with PRRSV. SSP treatment decreased levels of these inflammatory cytokines, and 200~400 μg/mL SSP had the best inhibiting effects. 【Conclusion】SSP can increase cell viabilities and reduce inflammatory cytokine levels in RAW264.7 cells infected by PRRSV, so as to intervene inflammatory response of immune cells infected by PRRSV.
Key words: porcine reproductive and respiratory syndrome virus(PRRSV); Sophora subprostrate polysaccharide; RAW264.7 cell; viability; inflammatory cytokine
0 引言
【研究意義】豬繁殖與呼吸綜合征病毒(Porcine reproductive and respiratory syndrome virus,PRRSV)屬尼多病毒目動脈炎病毒科動脈炎病毒屬,為RNA病毒。該病毒感染引發的豬繁殖與呼吸綜合征(PRRS)主要表現為母豬繁殖障礙、仔豬呼吸道癥狀和機體免疫抑制(譚業平等,2014),給世界養豬業造成巨大經濟損失。PRRSV感染可引起強烈的間質性肺炎,表明炎癥反應在PRRSV感染和致病性方面扮演著十分重要的角色(宋爽,2013)。病毒感染常導致動物機體處于氧化應激狀態,并促使機體產生過量的促炎細胞因子(Azevedo et al.,2006;Chen et al.,2012)。因此,掌握PRRSV感染的內在規律,對尋找和研發出理想的抗病毒感染藥物具有重要意義。【前人研究進展】RAW264.7細胞作為單核/巨噬細胞常被應用于病毒感染模型研究。Lin等(2012)以偽狂犬病毒(Pseudorabies virus,PRV)感染RAW264.7細胞模擬單純皰疹病毒(Herpes simplex virus,HSV)感染誘導炎癥的情況,發現β-類胡蘿卜素能顯著抑制PRV誘導RAW264.7細胞NO、IL-1β、IL-6、MCP-1的產生及NF-κB(p50和p65)、ERK、p38、JNK的表達,表明β-類胡蘿卜素通過抑制PRV誘導炎癥細胞因子的表達而起到抗炎作用。近年來,各國學者先后從多種生物體內提取出大量的生物活性多糖,并證實這些生物多糖結構復雜,具有抗腫瘤、抗菌、抗病毒、抗氧化、免疫調節等功能活性,且低毒、低殘留(Shao et al.,2004;Chang et al.,2010)。生物多糖能夠增強巨噬細胞的增殖活性,促進NO、H2O2等活性因子的產生及調節MCP-1、TNF-α、IL-1、IL-6、IL-8、IL-10等細胞因子的釋放,從而調節巨噬細胞的免疫功能(Winzler et al.,1997)。李智軍(2000)對系膜增生性腎小球腎炎大鼠模型的研究發現,黃芪多糖可降低大鼠血液及尿液中的IL-6含量,抑制系膜細胞增生和基質增多,具有抗炎保護作用。Yuan等(2008)研究發現,黃芪多糖對非肥胖性糖尿病小鼠胰島β細胞中INF-γ、IL-1β、IL-6和TNF-α等細胞因子的表達有明顯的下調作用,說明黃芪多糖可糾正Th1型細胞因子的免疫失衡狀態,從而預防糖尿病發生(Qiu et al.,2010)。Su等(2013)研究表明,山豆根多糖在50~800 μg/mL濃度范圍內對體外培養RAW264.7細胞存活率無顯著影響。【本研究切入點】目前,國內外針對PRRSV誘導豬體內炎癥反應,特別是PRRSV誘導促炎細胞因子的產生已有許多研究報道(馮麗麗,2009;郝祝兵,2014),但尚未研發出有效的治療藥物。多糖類藥物可從多方面對免疫系統發揮調節作用,從而提高機體抗炎和抗病毒感染能力,但有關生物多糖是否對PRRSV感染引發的炎癥反應具有抗炎作用尚需進一步探究。【擬解決的關鍵問題】探討山豆根多糖(Sophora subprostrate polysaccharide,SSP)對PRRSV體外感染RAW264.7細胞存活率及分泌炎性因子水平的影響,為研發出治療PRRS的新型獸藥提供參考依據。
1 材料與方法
1. 1 試驗材料
山豆根多糖(SSP)為灰白色粉末狀,由廣西大學動物科學技術學院藥理實驗室采用水提醇沉法提取并精制獲得,經苯酚硫酸法測得總糖含量為88.48%。SSP溶液:準確稱取SSP溶解于10% FBS-DMEM培養液,調節至所需濃度,用0.22 μm濾膜過濾,現配現用。PRRSV-GXA株毒株由廣西大學動物科學技術學院基礎藥理實驗室保存提供,經非洲綠猴腎傳代細胞(Marc-145)增殖后測得病毒滴度為10-5.6 TCID50/0.1 mL,用時調節至PRRSV體外感染RAW264.7細胞氧化脅迫模型稀釋度(100倍稀釋)。RAW264.7細胞由廣西大學動物科學技術學院基礎藥理實驗室分離并凍存。南美洲胎牛血清(FBS)經56 ℃水浴滅活30 min,用0.22 μm濾膜過濾后-20 ℃凍存備用;DMEM干粉、RPMI- l640干粉購自美國Gibco公司;小鼠TNF-α、IL-1β、IL-6、IL-8、IL-10、MCP-1等ELISA檢測試劑盒購自欣博盛生物科技有限公司;脂多糖(Lipopolysaccharides,LPS)、噻唑藍(MTT)、雙抗(P/S)、谷氨酰胺、胰蛋白酶等均購自美國Sigma公司。主要儀器設備:Multimode Plate Reader多功能酶標儀(PerkinElmer,瑞士)、TS100-F倒置顯微鏡(尼康,日本)、C150細胞培養箱(Binder,德國)。
1. 2 試驗方法
1. 2. 1 MTT法檢測RAW264.7細胞活性 設空白對照(CK)、SSP 400 μg/mL、SSP 200 μg/mL、SSP 100 μg/mL、SSP 50 μg/mL、PRRSV+SSP 400 μg/mL、PRRSV+SSP 200 μg/mL、PRRSV+SSP 100 μg/mL、PRRSV+SSP 50 μg/mL、LPS、PRRSV共11個處理組,每組6孔重復。
取傳代生長良好的RAW264.7細胞進行細胞計數,調節其濃度至1×105 cell/mL鋪于96孔板中,100 μL/孔,置于37 ℃、5% CO2培養箱中培養。待細胞貼壁后,棄上清液,各病毒組加入PRRSV液(100 μL/孔),非病毒組加入等量的無血清DMEM,37 ℃、5% CO2培養2 h,每15 min搖勻1次。棄上清液,多糖組分別加入不同濃度的山豆根多糖(200 μL/孔),LPS組加入1 μg/mL LPS(200 μL/孔),空白對照組、病毒對照組則加入等量的10% FBS-DMEM培養液。37 ℃、5% CO2培養4 h,吸出20 μL上清液后加入20 μL的5 mg/mL MTT繼續培養,4 h后棄上清液,加入100 μL DMSO振蕩,室溫避光靜置10 min,以Plate Reader多功能酶標儀檢測OD570 nm(劉民等,2005;趙嘉惠等,2007)。
1. 2. 2 ELISA檢測RAW264.7細胞分泌炎性因子水平 設空白對照(CK)、PRRSV+SSP 400 μg/mL、PRRSV+SSP 200 μg/mL、PRRSV+SSP 100 μg/mL、PRRSV+SSP 50 μg/mL、LPS、PRRSV共7個處理組,每組4孔重復。
傳代生長良好的RAW264.7細胞調節至1×106 cell/mL鋪于24孔板中,1000 μL/孔,置于37 ℃、5% CO2培養12 h。細胞貼壁后,棄上清液,病毒組加入PRRSV液(200 μL/孔),空白對照組加入10% FBS- DMEM(200 μL/孔),LPS組加入1 μg/mL LPS(200 μL/孔),37 ℃、5% CO2培養2 h,每15 min搖勻1次。棄上清液,多糖組加入不同濃度的山豆根多糖(1000 μL/孔),LPS組加入1 μg/mL LPS(1000 μL/孔),空白對照組、病毒對照組則加入等量的10% FBS-DMEM培養液。37 ℃、5% CO2培養8 h后收集細胞培養上清液,以ELISA試劑盒檢測炎性因子TNF-α、IL-1β、IL-6、IL-8、IL-10和MCP-1水平,并根據標準曲線計算其含量。
1. 3 統計分析
試驗數據采用SPSS 22.0進行單因素方差分析(One-way ANOVA),并以Duncans進行組間比較分析。
2 結果與分析
2. 1 RAW264.7細胞存活率測定結果
由表1可知,經50、100、200、400 μg/mL SSP分別處理8 h后RAW264.7細胞存活率未出現下降趨勢,反而呈升高趨勢,其中100、200和400 μg/mL SSP處理的RAW264.7細胞存活率極顯著高于空白對照組(P<
0.01,下同)。PRRSV感染RAW264.7細胞8 h后能有效降低細胞存活率,與空白對照組相比差異極顯著,但加入SSP處理8 h后RAW264.7細胞存活率均有所回升,其中200和400 μg/mL SSP能極顯著提高PRRSV感染RAW264.7細胞存活率,100 μg/mL SSP能顯著提高PRRSV感染RAW264.7細胞存活率(P<0.05,下同)。
2. 2 RAW264.7細胞分泌炎性因子水平測定結果
2. 2. 1 TNF-α水平測定結果 由表2可知,PRRSV感染RAW264.7細胞8 h可明顯升高細胞分泌TNF-α水平,與空白對照組相比差異極顯著。加入不同濃度SSP處理8 h后,發現SSP能有效降低PRRSV感染RAW264.7細胞分泌TNF-α的能力。其中,100 μg/mL SSP能顯著降低PRRSV感染RAW264.7細胞分泌TNF-α水平,200和400 μg/mL SSP能極顯著降低PRRSV感染RAW264.7細胞分泌TNF-α水平。
2. 2. 2 IL-1β水平測定結果 由表2可知,PRRSV感染RAW264.7細胞8 h可升高細胞分泌IL-1β水平,與空白對照組相比差異顯著。加入不同濃度SSP處理8 h后,發現SSP能有效降低PRRSV感染RAW264.7細胞分泌IL-1β的能力。其中,以200和400 μg/mL SSP的效果最明顯,使PRRSV感染RAW264.7細胞分泌IL-1β水平接近于空白對照組,而與病毒對照組(PRRSV)相比差異極顯著。
2. 2. 3 IL-6水平測定結果 PRRSV感染RAW264.7細胞8 h可極顯著升高細胞分泌IL-6水平(表2),但加入不同濃度SSP處理8 h后,PRRSV感染RAW264.7細胞分泌IL-6水平明顯下降。其中,200 μg/mL SSP能顯著降低PRRSV感染RAW264.7細胞分泌IL-6水平,400 μg/mL SSP能極顯著降低PRRSV感染RAW264.7細胞分泌IL-6水平。表明SSP能有效抑制PRRSV感染RAW264.7細胞分泌IL-6的能力。
2. 2. 4 IL-8水平測定結果 由表2可知,PRRSV感染RAW264.7細胞8 h可極顯著升高細胞分泌IL-8水平,但加入不同濃度SSP處理8 h后,發現SSP能有效降低PRRSV感染RAW264.7細胞分泌IL-8水平。其中,50~100 μg/mL SSP能在一定程度上降低PRRSV感染RAW264.7細胞分泌IL-8水平,但與病毒對照組(PRRSV)相比差異不顯著(P>0.05,下同);200和400 μg/mL SSP能極顯著降低PRRSV感染RAW264.7細胞分泌IL-8的能力。
2. 2. 5 IL-10水平測定結果 由表2可知,PRRSV感染RAW264.7細胞8 h可極顯著升高細胞分泌IL-10水平,但加入不同濃度SSP處理8 h后,PRRSV感染RAW264.7細胞分泌IL-10水平得到有效抑制。其中,50 μg/mL SSP能在一定程度上降低PRRSV感染RAW264.7細胞分泌IL-10水平,但與病毒對照組(PRRSV)無顯著差異,100、200和400 μg/mL SSP能極顯著降低PRRSV感染RAW264.7細胞分泌IL-10水平。
2. 2. 6 MCP-l水平測定結果 由表2可知,PRRSV感染RAW264.7細胞8 h可極顯著升高細胞分泌MCP-l水平,但加入不同濃度SSP處理8 h后,發現100、200和400 μg/mL SSP能極顯著降低PRRSV感染RAW264.7細胞分泌MCP-l水平,表明SSP能有效抑制PRRSV感染RAW264.7細胞分泌MCP-l的能力。
3 討論
PRRSV主要感染機體肺臟及一些淋巴器官,其宿主細胞是巨噬細胞,包括各種未成熟或已分化的巨噬細胞。肺泡巨噬細胞來自單核巨噬細胞系,由單核細胞系定居在組織中分化而來(Lamontagne et al.,2003)。作為一種貼壁生長的單核/巨噬細胞系RAW264.7細胞具有轉染穩定的特點,已被廣泛應用于醫學研究領域(Pang et al.,2010)。本研究結果表明,PRRSV感染RAW264.7細胞8 h后極顯著降低細胞存活率,但加入不同濃度SSP處理8 h后,尤其是經200和400 μg/mL SSP處理的PRRSV感染RAW264.7細胞存活率極顯著升高,提示一定濃度的SSP能有效降低PRRSV感染引起的細胞死亡,進而提高免疫細胞的存活率。
TNF-α作為巨噬細胞分泌的最重要促炎細胞因子,能夠刺激巨噬細胞活化并誘導其他促炎細胞因子分泌(Bradley,2008)。TNF-α可活化T、B淋巴細胞和巨噬細胞,并通過與受體TNFR1結合誘導產生黏附分子和其他細胞因子。IL-1β主要是由淋巴細胞、樹突狀細胞、單核細胞和巨噬細胞產生的一種促炎細胞因子,是機體調節免疫與炎癥反應的重要核心介質,在炎性反應中發揮重要作用(賈文思等,2013)。Liu等(2009)研究表明,豬肺泡巨噬細胞感染PRRSV后誘導分泌產生的IL-1β大量增多。而毛予龍等(2012)研究發現,甘草酸苷可通過降低促炎細胞因子IL-1β、IL-6等含量來增強細胞的抗炎能力,進而發揮抗病毒作用。本研究發現,PRRSV感染RAW264.7細胞8 h可極顯著升高細胞分泌TNF-α和IL-1β水平,而SSP能有效降低PRRSV感染RAW264.7細胞分泌TNF-α和IL-1β的能力,其抑制作用隨多糖劑量的增加而增強。
IL-6作為一種多效的細胞因子,參與調節多種生物進程,包括炎癥與免疫應答、應激反應、造血系統、神經系統等(Hirano,2009)。當機體發生炎癥或其他病變時,單核細胞和巨噬細胞是最早產生IL-6的反應細胞(Hirano et al.,1990)。在通常情況下,IL-6與TNF-α和IL-1β一同產生,參與調節炎癥反應(Rachman and Rinaldi, 2006; Sakakibara and Tosato,2011)。Liu等(2009)研究發現,8周齡仔豬在感染PRRSV后第7 d,豬肺泡巨噬細胞分泌大量IL-6。張海等(2014)研究表明,巴馬汀可明顯抑制LPS誘導RAW264.7細胞IL-6的生成,表現出較強的抗炎作用。本研究發現,200 μg/mL SSP可顯著降低PRRSV感染RAW264.7細胞分泌IL-6水平,400 μg/mL SSP可極顯著降低PRRSV感染RAW264.7細胞分泌IL-6水平。
趨化因子家族中兩個重要成員(IL-8和MCP-1)與炎癥反應過程密切相關(Braganhol et al.,2015;Crucitti et al.,2015;Deng et al.,2015)。IL-8是一種多功能的細胞因子,在病毒感染引發的炎癥反應中發揮著重要的調節作用(何青,2015)。Ait-Ali等(2007)研究發現,PRRSV感染長白豬和皮特蘭豬2 h后,其肺泡巨噬細胞中的 IL-8 水平急劇增高,且呈穩步上升趨勢;值得注意的是,長白豬巨噬細胞易感PRRSV的程度沒有皮特蘭豬強,其IL-8的分泌量亦低于皮特蘭豬,說明IL-8是巨噬細胞對PRRSV感染的一種免疫應答。MCP-1是趨化因子家族CC亞族成員,同屬成員有5種(MCP-l、MCP-2、MCP-3、MCP-4和MCP-5)。MCP-1作為一種能促進機體內炎癥微環境形成的細胞因子,與免疫應答過程及多種病理變化的發生和發展密切相關(Miotto et al.,2007)。仲芳等(2009)研究發現,姜黃素可抑制LPS誘導腎小管上皮細胞IL-8和MCP-1的表達水平,提示姜黃素在腎臟炎癥過程中具有抑制腎小管上皮細胞炎性因子分泌及潛在的抗纖維化作用。在本研究中,PRRSV感染RAW264.7細胞8 h可極顯著升高細胞分泌IL-8和MCP-1水平,而200~400 μg/mL SSP可極顯著降低PRRSV感染RAW264.7細胞分泌IL-8和MCP-1水平。
IL-10是一種對多種細胞均有影響的多功能細胞因子,可由多種細胞產生,如T淋巴細胞、B淋巴細胞、單核/巨噬細胞、成熟的樹突狀細胞等(Flores-Mendoza et al.,2008)。大多數病毒感染機體后均能引起IL-10高水平表達,一些病毒還通過編碼與IL-10同源的蛋白,借助其免疫抑制特性促進病毒感染(Redpath et al.,2001;Breen,2002)。另外,IL-10作為一種多效性細胞因子被普遍認為在PRRSV免疫學與病理學中發揮關鍵作用。在LPS刺激RAW264.7細胞釋放炎性因子模型中,人工麝香水提物可明顯降低炎性因子IL-10的釋放,即人工麝香具有顯著的抗炎免疫調節活性(孟迂等,2014)。本研究結果表明,100~400 μg/mL SSP可極顯著降低PRRSV感染RAW264.7細胞分泌IL-10水平。
4 結論
本研究結果表明,適量的SSP能有效提高PRRSV感染RAW264.7細胞存活率及降低其分泌TNF-α、IL-1β、IL-6、IL-8、IL-10及MCP-1水平,即SSP通過提高炎癥細胞存活率及抑制其分泌炎性因子水平,從而有效干預PRRSV感染免疫細胞的炎性反應。
參考文獻:
馮麗麗. 2009. PRRSV ADE途徑感染對豬肺泡巨噬細胞TNF-α的表達調控[D]. 鄭州:河南農業大學.
Feng L L. 2009. Effect on TNF-α expression of porcine pulmonary alveolar macrophages with PRRSV ADE infection[D]. Zhengzhou:Henan Agricultural University.
郝祝兵. 2014. PRRSV感染誘導免疫細胞氧化應激及其組蛋白乙酰化修飾的研究[D]. 南寧:廣西大學.
Hao Z B. 2014. Study on oxidative stress and histone acetylation in immune cells induced by PRRSV infection[D]. Nanning:Guangxi University.
何青. 2015. PRRSV不同致病性毒株非結構蛋白誘導靶細胞細胞因子差異表達的分子基礎[D]. 北京:中國農業大學.
He Q. 2015. Molecular basis of differential cytokine expression induced by nonstructural proteins of different pathogenic PRRSV strains in target cells[D]. Beijing:China Agricultural University.
賈文思,郭華,劉子臣,趙情梅,徐嘉萍,陳萌萌,張書霞. 2013. 豬繁殖與呼吸綜合征病毒對體外培養的豬肺泡巨噬細胞分泌細胞因子的動態影響[J]. 中國獸醫科學,43(7):707-712.
Jia W S,Guo H,Liu Z C,Zhao Q M,Xu J P,Chen M M,Zhang S X. 2013. Effect of porcine reproductive and respiratory syndrome virus on cytokines secreted by porcine alveolar macrophage cultured in vitro[J]. Chinese Veterinary Science,43(7):707-712.
李智軍. 2000. 黃芪有效部位對鼠系膜增生性腎炎模型病理改變及白介素6的影響[D]. 廣東:南方醫科大學.
Li Z J. 2000. The effect of effective element of austragalus to pathology and IL-6 in the mesangial proliferative glomerulonephritis rat[D]. Guangdong:Southern Medical University.
劉民,馬華,李柏青. 2005. MTT法檢測小鼠淋巴細胞增殖性反應探討[J]. 中國實驗動物學雜志,9(3):146-149.
Liu M,Ma H,Li B Q. 2005. Investigation of detecting murine lymphocyte proliferate response by MTT assay[J]. Chinese Journal of Laboratory Animal Science,9(3):146-149.
毛予龍,徐歆,胡勝蘭,鄭建林,李雅麗,李衛芬. 2012. 甘草酸苷對體外小鼠單核巨噬細胞細胞因子分泌的影響[J]. 中國預防獸醫學報,34(10):823-826.
Mao Y L,Xu X,Hu S L,Zheng J L,Li Y L,Li W F. 2012. Effect of glycyrrhizin on cytokine induction in murine monocyte macrophage in vitro[J]. Chinese Journal of Preventive Ve-
terinary Medicine,34(10):823-826.
孟迂,鄒秦文,白金葉,程桂芳,肖宣,章菽,朱秀媛,王曉良. 2014. 人工麝香水提物對脂多糖誘導RAW264.7細胞炎性介質表達的影響[J]. 中國醫學科學院學報,36(6):583-586.
Meng Y,Zou Q W,Bai J Y,Cheng G F,Xiao X,Zhang S,Zhu X Y,Wang X L. 2014. Effect of artificial musk aqueous extract on the expressions of inflammatory mediators released from lipopolysaccharide-stimulated RAW264.7 cells[J]. Acta Academiae Medicinae Sinicae,36(6):583-586.
宋爽. 2013. PRRSV誘導炎癥反應及其調控機制[D]. 武漢:華中農業大學.
Song S. 2013. PRRSV-induced inflammatory response and its regulatory mechanism[D]. Wuhan:Huazhong Agricultural University.
譚業平,陸昌華,胡肄農,何孔旺,黃小國. 2014. 規模豬場豬繁殖與呼吸綜合征(PRRS)風險評估系統的構建[J]. 江蘇農業學報,30(3):602-606.
Tan Y P,Lu C H,Hu Y N,He K W,Huang X G. 2014. A risk assessment system for porcine reproductive and respiratory syndrome in large-scale pig farms[J]. Jiangsu Journal of Agricultural Sciences,30(3):602-606.
張海,李佳川,胡泊楊,王平. 2014. 巴馬汀對LPS誘導的RAW264.7巨噬細胞IL-6表達的影響[J]. 西南民族大學學報(自然科學版),40(4):527-530.
Zhang H,Li J C,Hu P Y,Wang P. 2014. Effect of palmatine on IL-6 expression induced by LPS in RAW264.7 macrophage cells[J]. Journal of Southwest University for Nationalities(Natural Science Edition),40(4):527-530.
趙嘉惠,張華屏,王春芳. 2007. MTT法在檢測細胞增殖方面的探討[J]. 山西醫科大學學報,38(3):262-263.
Zhao J H,Zhang H P,Wang C F. 2007. Investigation of MTT assay in detecting cell proliferation[J]. Journal of Shanxi Medi-
cal University,38(3):262-263.
仲芳,陳慧,韓琳,靳遠萌,王偉銘,陳楠. 2009. 姜黃素對脂多糖刺激的腎小管近端上皮細胞分泌的相關炎癥因子的影響[J]. 腎臟病與透析腎移植雜志,18(3):236-241.
Zhong F,Chen H,Han L,Jin Y M,Wang W M,Chen N. 2009. Curcumin in hibits expression of pro-inflammation factors in renal tubular epithelial cells induced by lipopolysaccharide[J]. Chinese Journal of Nephrology,Dialysis & Transplantation,18(3):236-241.
Ait-Ali T,Wilson A D,Westcott D G,Clapperton M,Waterfall M,Mellencamp M A,Drew T W, Bishop S C,Archibald A L. 2007. Innate immune responses to replication of porcine reproductive and respiratory syndrome virus in isolated swine alveolar macrophages[J]. Viral Immunology,20(1):105-118.
Azevedo M S,Yuan L,Pouly S,Gonzales A M,Jeong K I,Nguyen T V,Saif L J. 2006. Cytokine responses in gnotobiotic pigs after infection with virulent or attenuated human rotavirus[J]. Journal of Virology,80(1):372-82.
Bradley J R. 2008. TNF-mediated inflammatory disease[J]. Journal of Pathology,214(2):149-160.
Braganhol E,Kukulski F,Lévesque S A,Fausther M,Lavoie E G,Zanotto-Filho A,Bergamin L S,Pelletier J,Bahrami F,Ben Yebdri F,Fonseca Moreira J C,Battastini A M,Sévignyet J. 2015. Nucleotide receptors control IL-8/CXCL8 and MCP-1/CCL2 secretions as well as proliferation in human glioma cells[J]. Biochimica et Biophysica Acta,1852(1):120-130.
Breen E C. 2002. Pro-and anti-inflammatory cytokines in human immunodeficiency virus infection and acquired immuno-
deficiency syndrome[J]. Pharmacology & Therapeutics,95(3):295-304.
Chang Z Q,Lee J S,Gebru E,Hong J H,Jung H K,Jo W S,Park S C. 2010. Mechanism of macrophage activation induced by β-glucan produced from paenibacillus polymyxa JB115[J]. Biochemical and Biophysical Research Communications,391(3):1358-1362.
Chen X,Ren F,Hesketh J,Shi X,Li J,Gan F,Huang K. 2012. Reactive oxygen species regulate the replication of porcine circovirus type 2 via NF-kB pathway[J]. Virology,426(1):66-72.
Crucitti A,Corbi M,Tomaiuolo P M,Fanali C,Mazzari A,Lucchetti D,Migaldi M,Sgambato A. 2015. Laparoscopic surgery for colorectal cancer is not associated with an increase in the circulating levels of several inflammation-related factors[J]. Cancer Biology & Therapy,16(5):671-677.
Deng B,Fang F,Yang T L,Yu Z X,Zhang B,Xie X M. 2015. Ghrelin inhibits AngII-induced expression of TNF-α,IL-8,MCP-1 in human umbilical vein endothelial cells[J]. International Journal of Clinical and Experimental Medicine,8(1):579-588.
Flores-Mendoza L,Silva-Campa E,Reséndiz M,Osorio F A,Hernández J. 2008. Porcine reproductive and respiratory syndrome virus infects mature porcine dendritic cells and up-regulates interleukin-10 production[J]. Clinical & Vaccine Immunology,15(4):720-725.
Hirano T,Akira S,Taga T,Kishimoto T. 1990. Biological and clinical aspects of interleukin 6[J]. Immunology Today,11(12):443-449.
Hirano T. 2009. Interleukin 6 in autoimmune and inflammatory diseases:a personal memoir[J]. Proceedings of the Japan Academy,86(7):717-730.
Lamontagne L,Page C,Larochelle R,Magar R. 2003. Porcine reproductive and respiratory syndrome virus persistence in blood,spleen,lymph nodes,and tonsils of experimentally infected pigs depends on the level of CD8high T cells[J]. Vimal Immunology,16(3):395-406.
Lin H W,Chang T J,Yang D J,Chang Y Y,Chen Y C,Wang M L. 2012. Regulation of virus-induced inflammatory response by β-carotene in RAW264.7 cells[J]. Food Chemistry,134(4):2169-2175.
Liu C H,Chaung H C,Chang H L,Peng Y T,Chung W B. 2009. Expression of Toll-like receptor mRNA and cytokines in pigs infected with porcine reproductive and respiratory syndrome virus[J]. Veterinary Microbiology,136(3-4):266-276.
Miotto D,Boschetto P,Bononi I,Milani G,Legorini C,Cavallesco G,Lo Cascio N,Zeni E,Fabbri L M,Mapp C E. 2007. CC ligand 2 levels are increased in LPS-stimulated peripheral monocytes of patients with non-small cell lung cancer[J]. Respiratory Medicine,101(8):1738-1743.
Pang P,Chen F Y,Tang J,Ma L F,Wang J C,Zheng S J. 2010. Avian leukosis virus p27 inhibits tumor necrosis factor alpha expression in RAW264.7 macrophages after stimulation with lipopolysaccharide[J]. Acta Virologica,54(2):119-124.
Qiu H H,Cheng G L,Xu J Q,Zhang Z W,Liu F H,Zhu X Y,Zhao J,Zhang Y J. 2010. Effects of Astragalus polysaccharides on associated immune cells and cytokines in immunosuppressive dogs[J]. Procedia in Vaccinology,2(1):26-33.
Rachman A,Rinaldi I. 2006. Coagulopathy in dengue infection and the role of interleukin-6[J]. Acta Medica Indonesiana,38(2):105-108.
Redpath S,Ghazal P,Gascoigne N R. 2001. Hijacking and exploitation of IL-10 by intracellular pathogens[J]. Trends in Microbiology,9(2):86-92.
Sakakibara S,Tosato G. 2011. Viral interleukin-6:role in Kaposis sarcoma-associated herpesvirus:associated malignancies[J]. Journal of Interferon & Cytokine Research,31(11):791-801.
Shao B M,Xu W,Dai H,Tu P F,Li Z J,Gao X M. 2004. A study on the immune receptors for polysaccharides from the roots of Astragalus membranaceus,a Chinese medicinal herb[J]. Biochemical and Biophysical Research Communications,320(4):1103-1111.
Su Z J,Wei Y Y,Yin D,Shuai X H,Zeng Y,Hu T J. 2013. Effect of Sophora subprosrate polysaccharide on oxidative stress induced by PCV2 infection in RAW264.7 cells[J]. International Journal of Biological Macromolecules,62:457-464.
Winzler C,Rovere P,Resigno M,Granucci F,Penna G,Adorini L,Zimmermann V S,Davoust J,Ricciardi-Castagnoli P. 1997. Maturation stages of mouse dendritic cells in growth factor-dependent long-term cultures[J]. The Journal of Experimental Medicine,185(2):317-328.
Yuan C T,Pan X P,Gong Y,Xia A J,Wu G H,Tang J Q,Han X D. 2008. Effects of Astragalus polysaccharides(APS) on the expression of immune response genes in head kidney,gill and spleen of the common carp,Cyprinus carpio L[J]. International Immunopharmacology,8(1):51-58.
(責任編輯 蘭宗寶)