黃冬冬



摘要:泄漏特別是小漏預警對熱力管道的安全維護具有重要意義。受空間分辨率的影響,分布式光纖傳感器對小漏引起的局部溫度變化測試精度較低,測量溫度與實際溫度差異較大。以布里淵光時域反射儀(BOTDR)作為測量手段,提出了一種建立分布式光纖測量溫度與實際溫度之間對應關系的方法。設計完成了小漏溫度場模擬測量實驗,通過高斯擬合對測量數據進行特征提取,再用人工神經網絡建立測量溫度與實際溫度的映射模型。結果表明:設計的實驗方案可獲得代表管道小漏溫度分布的先驗數據,基于此訓練的人工神經網絡可確立實際溫度場與BOTDR測量溫度場的對應關系,提高了光纖測試精度并為泄漏預警策略的制定提供了依據。
關鍵詞:管道泄漏;布里淵散射;高斯擬合;人工神經網絡
中圖分類號:TN253
文獻標志碼:A 文章編號:1674-4764(2016)02-0097-07
Abstract:Early warning of leakage, especially small leakage, is significant for safety maintenance of thermal pipeline. Due to spatial resolution, the measuring accuracy of distributed fiber optic sensor for local temperature variation caused by small leakage is low and the measurements are quite different from the actual temperature field. Based on Brillouin optical time domain reflectometer (BOTDR), a new method to establish a mapping relationship between the BOTDR measurements and the actual temperatures is proposed. Laboratory experiments were carried out to simulate small leakage and achieve the measurements of gradient temperature fields. Feature extraction of the measured data is then conducted through Gaussian fitting. With artificial neural network (ANN), a mapping model of the actual and measured temperature features is established. The results demonstrate that: the designed experiment can accumulate enough prior data to derive an ANN model, based on which a mapping relation of the actual temperature field and the BOTDR measurements can be achieved to improve the measuring accuracy of BOTDR and provide a reference to propose warning strategy.
Keywords:pipeline leak; brillouin scattering; gauss fitting; artificial neural network
管道運輸是現代工業和國民經濟的命脈,具有運輸量大、連續、經濟、平穩、可靠、占地少、費用低、可實現自動控制等諸多優點,是繼鐵路、公路、水運、航空運輸之后的第五大運輸業[1]。中國北方大部分地區實行冬季集中供暖,大大小小的鍋爐房生產的熱水經過熱力管道送達千家萬戶。熱力管道是生命線工程的重要部分,一旦發生泄漏,不僅會使居民采暖受到影響,有時還會危及人身安全。
熱力管道泄漏往往由小漏、微漏開始,如果能及時發現,完全可以避免更嚴重事故的發生。然而,大多數供熱管道都埋在地下,查找泄漏點難度非常大,尤其是有些直埋敷設管道,如果找錯泄漏點,會給檢修人員帶來很大麻煩。……