戴劍勇 崔建強
(南華大學核資源工程學院)
?
鈾礦山通風降氡系統免疫粒子群優化控制研究*
戴劍勇崔建強
(南華大學核資源工程學院)
摘要通風系統是鈾礦山中降低氡濃度的最主要方式,重點研究與通風壓力有關的氡析出量,從而達到通風降氡的目的。建立氡析出量與通風壓力的關系方程,應用免疫粒子群優化算法實現通風降氡系統的最優控制,以降低氡及氡子體的析出率,改善井下作業環境。并以某鈾礦山通風系統為例,實現了地下鈾礦山通風系統優化控制,提高了通風安全管理效率。免疫粒子群優化算法在通風降氡系統中具有一定的可行性。
關鍵詞通風降氡系統氡析出率免疫粒子群優化算法
在普通地下礦山中,礦井通風系統是礦山生產系統的重要部分,其作用是向礦井各需風地點提供新鮮空氣、排除污染空氣,為井下工作人員提供安全保障。在特殊礦山中,如鈾礦山,其中含有大量的氡及氡子體等放射性有害物質,給礦山安全生產帶來了巨大危害,通風系統在這一特殊礦山生產系統中的作用更為重要,是鈾礦山中降低氡及氡子體濃度的最主要方式[1]。通風壓力的變化直接影響著氡及氡子體的析出率,因此,研究通風壓力與氡析出率的動態關系具有重要意義。
氡在工作空間中的運移規律和析出規律一直備受專家學者關注,早在上世紀80年代,吳鋼等人通過氡及其子體的潛能積累的雙曲線回歸方程,得出排氡及其子體的風量計算公式[2]。此后的專家學者分別從不同的通風方式、壓力梯度以及溫度等不同情況下研究氡及其子體的析出、運移規律[3-5]。但是這些研究僅僅局限于運用計算公式表示氡的析出規律,而沒有運用較為先進的優化算法對其本身進行改進或求解出最優值。本文采用免疫粒子群優化算法對通風壓力下的氡析出規律進行優化,從而求得氡析出滿足安全條件下通風壓力的最優值。
1通風降氡系統方程構建
1.1氡擴散遷移動力學方程
礦石堆表面氡析出包含2個過程:鐳原子衰變產生可移動的氡,可移動氡在孔隙裂隙中擴散、滲流等,向廢石堆表面運移。根據Fick擴散定律,礦石堆表面氡析出的一維擴散式為
(1)
式中,D為氡在孔隙空間中的擴散系數,m2/s;v為介質中的氣體滲流速度,m/s;C為介質孔隙中的氡濃度,Bq/m3;λ為氡的衰變常數,2.1×10-6s-1;α為射氣介質產生可移動氡的能力,Bq/(m3/s);t為擴散時間,s。
當系統趨于穩定時,可從式(1)得知
(2)
由式(2)可得到氡濃度解析解的形式為
(3)
式中,a,b由邊界條件確定,邊界條件為x∈(0~∞),x為氡距離巖體表面的距離,m。
1.2通風降氡系統動力學方程
機械通風為礦井工作空間提供了穩定的風壓和風量。通風壓力影響氡的析出,通風風量稀釋已析出的氡[6-8]。本文主要考慮氡在機械通風壓力下的巖礦體表面的氡析出率。機械通風主要影響氡的滲流過程,由于井下巷道長度一般大于氡在巖礦體內的擴散長度,因此,巷道中氡析出可以看成為半無限大中空球體問題,此時,巖石礦層表面空氣的滲流速度為
(4)
將式(3)代入式(4)得
(5)
其中,
(6)
(7)
式中,k為介質滲透率,m/s;δ為滲流幾何修正系數;μ為氣體的黏滯系數,Pa·s;d為上覆巖層厚度,m;Hi為某一時刻地下通風空間所在位置的風壓,Pa;Rf為風壓0點與當前位置之間的總風阻,kg/m7;Qi為當前位置某一時刻的風量,m3/s。
因此,可以得出巖層表面礦體的析出率:
(8)
2通風降氡系統免疫粒子群優化
根據氡析出率方程及氡濃度方程約束條件,構建鈾礦山通風降氡系統目標函數。
氡濃度是隨礦井風量、風壓不斷變化的動態常量,免疫粒子群優化算法的作用是在保證各項指標在允許的可變動范圍之內,達到氡濃度值和氡析出率最低,實現對氡濃度動態變化的最優控制。
由氡擴散遷移動力學方程和通風降氡系統動力學方程組成目標函數,即
(9)
(10)
式中,cmax,jmax分別是規定范圍內允許的氡濃度和氡析出率的最大值。
粒子群算法(PSO)是一種基于群體的隨機優化算法,群體中的每個粒子代表可能產生的解,每個粒子由位置向量、速度向量和適應度組成,其中適應度由目標函數決定。由于粒子群算法沒有進化算子,因此引入免疫算法的免疫記憶機制,免疫粒子作為進化算子增加了種群的多樣性,避免粒子群算法陷入局部最優解的情況,同時也實現了粒子群算法的進化作用[9-11]。其操作步驟如下:
(1)確定算法步長參數c1和c2、種群規模N、進化次數、初始速度以及種群上下邊界值。
(2)隨機產生N個初始粒子以及粒子的初始速度vi,i=1,2,…,N,此時N個初始粒子構成初始種群P0。
(3)計算每個粒子的適應度。
(4)生成免疫記憶粒子(抗體),根據粒子(抗體)的適應度值找到其經歷過最優位置時的個體和全局最優適應度值,并將個體最優位置時的粒子(抗體)作為免疫粒子。
(5)對粒子(抗體)進行速度和位置更新,并隨機產生M個新粒子(抗體)。
(11)
(12)
式中,Vi,j(t+1)為下一時刻的速度,m/s;Vi,j(t)為當前粒子速度,m/s;Xi,j(t+1)為下一時刻粒子的位置;Xi,j(t)為當前粒子位置;pi,j為當前粒子的最優位置;pg,j為當前全局最優位置;r1,r2為0~1相互獨立的隨機數。
(6)在N+M個新粒子(抗體)中進行自適應變異操作,選擇符合條件的N個粒子(抗體)形成粒子群Ak。
(13)
式中,Ps(xi)是第i個粒子所在最優位置區域的概率;f(x)為粒子的適應度值。
(7)將種群Ak中適應度較差的粒子(抗體)替換為免疫粒子,形成新的種群,計算其適應度,若滿足條件,則終止,否則轉(3)。
3應用實例
某鈾礦山巷道長100m,寬4m,高2.5m,礦石密度為2.7×103kg/m3,品位為0.2%,孔隙率為0.4,射氣系數D=0.12,礦石平均直徑為0.45m。由此計算得到射氣介質產生可移動氡的能力a=92.3Bq/(m3/s),介質的滲透率為k=2.11×10-11m2。取空氣的粘滯系數μ=2.0×10-5Pa·s,上覆巖層的厚度d=50m,滲流幾何修正系數δ=3。
仿真中算法的初始化參數:粒子進化次數maxgen=200,粒子種群規模sizepop=50,學習因子c(1)=c(2)=1.494 45,經免疫粒子群迭代優化可得適應度曲線,見圖1。

圖1 免疫粒子群優化迭代適應度
在D=0.12,d=50 m,x=1 m的情況下,對該算法運行10次,得到的最優解值為(0.968 9,0.008 6,1.613 3),(0.968 9,0.008 6,0.231 6),將此結果與該鈾礦山最優氡析出參數表做對比,結果表明,免疫粒子群優化算法得到的最優結果與礦井該風量情況下的氡濃度和氡析出率相吻合。見表1、表2。

表1 某鈾礦山最優氡析出參數[12-13]

表2 免疫粒子群優化算法最優氡析出參數
4結語
根據機械通風壓力與氡析出關系機制,建立了通風壓力與氡濃度關系表達式,在粒子群算法的基礎上引入人工免疫系統機理,仿真結果與實際礦井的氡濃度相吻合,免疫粒子群優化算法具有較強的全局搜索能力,引入自適應變異機制,從而克服了陷
入局部最優值的情況。但是在實際操作中,這種算法也表現出了一定的不穩定性,運行若干次后,可能會得到粒子的適應度不為0的情況,概率約為0.05,但是經過多次運行,并不影響求解問題的最優值。應用免疫粒子群優化算法實現通風排氡系統的最優控制具有一定的現實意義,能夠為實現機械通風壓力與氡濃度的動態平衡,降低氡及氡子體析出率的目的提供指導依據,對改善井下作業環境,提高地下鈾礦山通風系統可靠性具有一定的參考價值。
參考文獻
[1]周星火.鈾礦通風與輻射安全[M].哈爾濱:哈爾濱工程大學出版社, 2009.
[2]劉再道,曾令國,譚建華,等.氡滲流控氡技術在某鈾礦井通風中的應用[J].鈾礦冶,2012,31(3): 152-157.
[3]葉勇軍,丁德馨,周星火,等.鈾礦山地下留礦法采場內氨運移的數值模擬[C]∥中國核科學技術進展報告(第二卷).北京:中國核學會,2011:111-115
[4]洪昌壽,李向陽,胡鵬華,等.鈾礦山井底車場巷道內氨及其子體濃度分布規律研究[J],核科學與工程,2015,35(2):385-393.
[5]胡鵬華,李先杰.我國鈾礦通風降氧現狀分析[J].輻射防護, 2011,31(3):179-184.
[6]梁政,周星火,劉暢榮.鈾礦通風與降氨技術研究[J].中國安全生產科學技術,2006(2):53-56.
[7]張哲,朱民安,張永祥.地下工程與人居環境氡防護技術[M].北京:原子能出版社,2010.
[8]曹眾為.壓力梯度和溫度對多孔射氣介質氡析出率影響的試驗研究[D].衡陽:南華大學,2013.
[9]左一多.多目標優化問題的粒子群算法及其性能分析[D].北京:中國地質大學,2013.
[10]董方.粒子群算法研究及其在動態優化中的應用[D].杭州:浙江大學,2014.
[11]徐訊.多目標粒子群優化算法及其應用研究[D].無錫:江南大學,2011.
[12]戴劍勇,劉丁雄.地下鈾礦山氡析出智能優化控制研究[J].南華大學學報:自然科學版,2014,28(4):35-39.
[13]戴劍勇,石競羽.基于氦析出機制的鈾礦井巷道通風可靠性分析[J].核技術,2015,38(1):34-38.
(收稿日期2015-12-01)
*國家自然科學基金項目(編號:51174116)。
戴劍勇(1969—),男,副教授,421000 湖南省衡陽市。