999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

增強(qiáng)UV-B輻射對(duì)喜樹(shù)生理指標(biāo)及喜樹(shù)堿含量的影響

2016-07-04 07:55:48王玲麗周曉君劉文哲
西北植物學(xué)報(bào) 2016年5期

王玲麗,周曉君,劉文哲

(1 運(yùn)城學(xué)院 生命科學(xué)系,山西運(yùn)城 044000;2 西北大學(xué) 生命科學(xué)學(xué)院,西安 710069;3 洛陽(yáng)師范學(xué)院 生命科學(xué)學(xué)院,河南洛陽(yáng) 471022)

增強(qiáng)UV-B輻射對(duì)喜樹(shù)生理指標(biāo)及喜樹(shù)堿含量的影響

王玲麗1,2,周曉君2,3,劉文哲2*

(1 運(yùn)城學(xué)院 生命科學(xué)系,山西運(yùn)城 044000;2 西北大學(xué) 生命科學(xué)學(xué)院,西安 710069;3 洛陽(yáng)師范學(xué)院 生命科學(xué)學(xué)院,河南洛陽(yáng) 471022)

摘要:喜樹(shù)(Camptotheca acuminata Decne.)隸屬于藍(lán)果樹(shù)科(Nyssaceae)喜樹(shù)屬(Camptotheca),為抗癌藥物喜樹(shù)堿的主要資源,提高喜樹(shù)堿的積累以滿足臨床需求是喜樹(shù)堿開(kāi)發(fā)的重要途徑。該研究運(yùn)用UV-B輻射對(duì)2年生喜樹(shù)進(jìn)行每天8 h輻射處理,對(duì)1年生喜樹(shù)分別設(shè)置每天2 h、4 h、6 h和8 h的輻射處理,連續(xù)處理12 d后分別測(cè)定各處理喜樹(shù)葉的葉綠素、MDA、游離脯氨酸 (Fpro)含量和SOD活性,以及幼葉、幼枝和根中喜樹(shù)堿含量,分析UV-B輻射對(duì)喜樹(shù)生理指標(biāo)和次生代謝物的影響,以揭示喜樹(shù)堿為喜樹(shù)適應(yīng)UV-B輻射逆境的防御產(chǎn)物。結(jié)果顯示:(1)2年生喜樹(shù)經(jīng)UV-B每天8 h輻射處理12 d后,葉綠素含量較對(duì)照顯著降低,而MDA、Fpro和喜樹(shù)堿含量均增加,說(shuō)明每天8 h UV-B輻射對(duì)2年生喜樹(shù)產(chǎn)生了較強(qiáng)的脅迫傷害。(2)1年生喜樹(shù)經(jīng)UV-B輻射處理12 d后,隨著每天UV-B輻射時(shí)間的增加,葉綠素含量不斷降低,F(xiàn)pro含量顯著增加;每天2~6 h處理的MDA含量與對(duì)照無(wú)顯著差異,但總體隨處理時(shí)間增加呈上升趨勢(shì);每天8 h UV-B輻射的MDA含量較對(duì)照顯著增加;SOD活性隨每天處理時(shí)間的延長(zhǎng)呈先下降、后上升、再下降的變化趨勢(shì),說(shuō)明每天8 h的UV-B輻射對(duì)一年生喜樹(shù)也產(chǎn)生了脅迫傷害。(3)1年生喜樹(shù)幼葉、幼枝和根中喜樹(shù)堿含量隨著每天UV-B輻射時(shí)間的延長(zhǎng)均呈遞增趨勢(shì),而且每天8 h輻射處理的喜樹(shù)堿含量均最高,其中幼葉和幼枝中喜樹(shù)堿含量顯著高于根中含量。實(shí)驗(yàn)結(jié)果表明,增強(qiáng)UV-B輻射對(duì)喜樹(shù)造成了一定的傷害,而喜樹(shù)通過(guò)改變生理以及次生代謝機(jī)制,以進(jìn)一步產(chǎn)生喜樹(shù)堿來(lái)響應(yīng)增強(qiáng)UV-B的脅迫。

關(guān)鍵詞:喜樹(shù);UV-B輻射;喜樹(shù)堿含量;生理指標(biāo)

Camptotheca acuminataDecne.belongstotheNyssaceaefamilyandisaperennialdeciduousplantthatisuniquetoChina,andismainlydistributedalongtheYangtzeRiverandSouthwestprovincesofChina[1].Theplantisknowntobotanyandmedicinebecauseitsvariousorganscontainthealkaloidcamptothecin(CPT)anditsderivativeswhichhaveimportantbiologicalactivities.

CPT,apentacyclicquinolinealkaloid,isaneffectivemedicineincancertreatment,whichwasfirstisolatedfromthestemofC. acuminata,andthestructuresofthisalkaloidweredeterminedbyWallandhiscollaborators[2].CPTisknownforitsremarkableanti-canceractivitytoinhibittheeukaryoticDNAtopoisomeraseI[3].Italsoinhibitsretrovirusessuchasthehumanimmunodeficiencyvirus(HIV)andtheequineinfectiousanemiavirus[4].CPTisavaluablecompoundasachemicalprecursoroftopotecanandirinotecanwhichwereapprovedbytheUSFoodandDrugAdministrationin1996forthetreatmentofovarianandcolorectalcancers[5].

AlthoughmuchisknownaboutmanyfactorswhichaffecttheaccumulationofCPTinC. acuminata,stillonlylittleisknownabouttheeffectofUV-BradiationonCPTaccumulation.BecauseofthepromisingclinicalusesofCPT,itisimportanttoinvestigatethefactorsaffectingCPTyieldinplantmaterial.Inthepaststudy,droughtcanincreasedCPTcontentinleavesofC. acuminata[6].MethyljasmonicacidandthetreatmentsofyeastextractonleafdiscspunchedfromC. acuminataseedlingspromotedthemRNAexpressionoftryptophandecarboxylase(TDC),akeyenzymeinvolvedinCPTbiosynthesis[7].Similarly,methyljasmonicacidandyeastextracttreatmentsonC. acuminatacellsuspensionculturesincreasedCPTaccumulation[8].ItcanenhanceCPTproductionbyethanoladditioninthesuspensioncultureoftheendophyte, Fusarium solani[9].Wanget al[10]reportedCPTcontentdecreasedafter10daysUV-Bradiation,andincreasedafter40daysUV-Bradiation.ButtheydidnotstudythechangeofCPTcontentbetween10daysUV-Bradiation.ThisstudyinvestigatedtheeffectsofUV-Bradiationbetween12daysontheaccumulationofCPTinC. acuminata,whichwouldprovideabasisformaximizingCPTyieldanddesigninganaffectiveCPTproductionsystem.

1Materials and methods

1.1Plant materials

One-year-oldandtwo-year-oldC. acuminataplantsweregrownfromseeds.SeedsofC. acuminatawereselectedtogatherfromBotanicalGardenofXi’aninNovemberof2012and2013,thenrespectivelyembeddedinwetsandat25 ℃inMarchthenextyear.Aftertheseedsgeminated,theuniformseedlingswereselectedandtransplantedintoflowerpotsinthebotanicalgardenofNorthwestUniversity(Xi’an,China).

1.2UV-B radiation

SupplementalUV-BradiationwasprovidedbyfilteredGucunbrand(GucunInstrumentFactory,Shanghai,China) 30Wsunlamps.Lampsweresuspendedaboveandperpendiculartotheplantedrowsandfilteredwitheither0.13mmthickcellulosediacetate(transmissiondownto290nm)forUV-Birradianceor0.13mmpolyesterplasticfilms(absorbsallradiationbelow320nm)asacontrol.Thedesiredirradiationwasobtainedbychangingthedistancebetweenthelampsandtheplants.ThespectralirradiancefromthelampswasdeterminedwithanOptronicsModel742 (OptronicsLaboratories,Orlando,FL,USA)spectroradiometer.Thespectralirradiancewasweightedwithageneralizedplantresponsespectrumandnormalizedat300nmtoobtainthedesiredlevelofbiologicallyeffectiveUV-Bradiation.Thelampheightabovetheplantswasadjustedtomaintainadistanceof0.15mbetweenthelampsandthetopoftheplantsandprovidedsupplementalirradiancesof2.1effectiveuw·cm-2.Two-year-oldplantswereirradiatedfor12daysand8hdaily.InordertofurtherillustratetheeffectsofsupplementalUV-Birradiance,one-year-oldplantswereirradiatedfor12daysandrespectivelyarranged2h, 4h, 6hand8hradiationdaily.FilteredUV-Bradiationwasregardedasthecontrol(CK).

1.3Determination of physiological parameters

PhysiologicalparametersweredeterminatedinleavesofC. acuminata.Chlorophyllwasextractedwith96%alcohol,andchlorophyllcontentwasmeasuredaccordingtothemethodofZhang[11].Malonaldehyde(MDA)contentwasdeterminedaccordingtothemethodofHeathandPacker[12].Fprocontentwasextractedfromleavesin3%aqueoussulphosalicylicacidandestimatedusingninhydrinreagent[13].Superoxidedismutase(SOD)activitywasdeterminedaccordingtothemethodofGiannopolitisandRies[14].

1.4CPT content analysis

1.4.1HPLCanalysisTheHPLCsystemconsistedofaHPLCpump(LC-10ATvp),areversedphasecolumn(VP-ODS, 150mm×4.6mm, 5μm)andaUV-VISdetector(SPD-10Avp)forthedetectionofCPTat254nm[15].Sampleinjectionvolumewas10μLaccordingtothepresumablealkaloidcontent.Theflowratewas1.0mL·min-1.Themobilephaseusedwasmethanol/water(62/38,V/V).Columntemperaturewas25 ℃.Underthiscondition,theHPLCchromatogramsofthestandardandsamplesolutionswereshowedinFig.1.CPTstandardwaskindlysuppliedbyDr.H.BischoffofBoehringerIngelheimPharmaKG.inGermany.

Fig.1 The HPLC chromatograms of the standard and sample (peak 1: camptothecin)

1.4.2StandardcurveCPTstandard2.5mgwasputin50mLvolumetricflask,suitableamountofchromatographicmethanolwasadded,andmeteredvolumeaftertheultrasonichelpingdissolve.Thesolutionwasshakedandfilteredwith0.45μmmicroporousmembrane,then0.05mg·mL-1standardsolutionwasgot. 2, 3, 5, 8and10mLofCPTstandardsolutionwerepreciselymeasuredandputin10mLvolumetricflask,dilutedwithchromatographicmethanol,thenrespectivelymeteredvolume.ThestandardcurveforCPTwasconstructedbyseparateinjectionof10μLoftheabove-mentionedstandardsolutionaccordingtotheabovechromatographyconditions.TheregressionequationbetweenpeakareaYandtheconcentrationofcamptothecinX (μg·mL-1)was: Y=16 686X-6 577.5, R2=0.999 3.

1.4.3DeterminationofCPTcontentThesamplesweredriedintheshadeandgroundedinamortar. 100mgofthesampleswastransferredtoacentrifugetubeand4mLmethanolwasadded.Afterextractedwithsonicationfor10minatroomtemperature, 30mLwaterand40mLdichloromethanewereaddedandthiswasmixedvigorouslyfor5minonamagneticalstirrer[16],centrifugationfor10minat2 000r·min-1yieldedtwophases.ThedichloromethanephasewhichwasprovedtocontainCPT,wasrecoveredandevaporatedtodrynessinvacuumusingarotavapor.Theremainingresiduewasre-dissolvedinHPLC-grademethanol(1mL),filteredwith0.45μmmicroporousmembranethengotsamplesolutionwhichwasusedforthedeterminationofCPTcontent.Samplepeakswiththesameretentiontimetostandardswereverifiedbyspectralscananalysis.

2Results

2.1Effects of UV-B radiation on two-year-old C. acuminata

Thecontentsofchlorophyll,MDAandFproaswellasSODactivityweremeasuredaftertwo-year-oldplantswereirradiatedwithUV-Bradiation.TheresultsshowedinTable1,chlorophyllaandbcontentswerereduced,chlorophylla/bratiohadalesserextentincreaseunderenhancedUV-B.MDAandFprocontentsincreased.TheactivityofSODwasreduced.CPTcontentsinyoungleaves,youngshootsandrootofC. acuminatahadobviouslyincreasedafterUV-Btreatmentcomparedwiththecontrol,CPTcontentinroothasnosignificantdifferencecomparedwiththecontrol.

2.2UV-B radiation effects on chlorophyll contents in one-year-old C. acuminata

TheeffectsofenhancedUV-Bonchlorophyllcontentsinone-year-oldC. acuminatawereshowninFig.2.Thesametotwo-year-oldplant,chlorophyllcontentsdecreasedafterUV-Bradiation,andwiththetreatmenttimeprolonging,thechlorophyllaandchlorophyllbcontentsgraduallydecreased.Thetotalchlorophyllcontentof2h, 4h, 6hand8hUV-Btreatmentdailywasrespectivelyreducedby9.4%, 10.8%, 15.7%, 26.8%thanthecontrol.While8hUV-Btreatmentdaily,chlorophyllaandbcontentsdecreased26.4%and27.8%,respectively.Chlorophylla/bratiohadalittlechangecomparedwiththecontrol,itissuggestedthatthedifferenceofdestroyedextentaboutchlorophyllaandbisnotobvious.

Table 1 Effects of UV-B radiation on physiological indices

Note:Eachassaywasrepeatedthreetimesfromthreeindependentexperiments.Thedataarethemeans±SEMofthreereplicates.Asterisk(*)indicatesstatisticallysignificantdifference(P< 0.05;ANOVA,Tukeytest).

2.3UV-B radiation effects on MDA, Fpro contents and SOD activity in one-year-old C. acuminata

Each assay was repeated three times from three independent experiments. The data are the means ± SEM of three replicates. Different letters indicate statisticallysignificant differences (P< 0.05; ANOVA, Tukey test).The same as belowFig.2 Effect of UV-B radiation on chlorophyll content in one- year-old C. acuminata

Fig.3 Effects of UV-B radiation on MDA, Fpro contents and SOD activity in one- year-old C. acuminata

Fig.4 Effect of UV-B radiation on CPT content in one-year-old C. acuminata

2.4UV-B radiation effects on CPT contents in one-year-old C. acuminata

UV-BradiationalsohadobviouseffectsonCPTcontentsinyoungleaves,youngshootsandrootsofone-year-oldC. acuminata (Fig.4).WhenthetimeofenhancedUV-Btreatmentreachedto8hdaily,theCPTcontentsweresignificantlyincreasedcomparedwiththecontrol.WiththetimeofUV-Bradiationprolonging,CPTcontentsinyoungleavesandshootsincreasedfasterthanthatintheroot,andCPTcontentofyoungleavesincreasedto0.230%from0.106%ofthecontrolgroupafter8hradiationdaily,youngstemincreasedfrom0.064%to0.158%,andtheincreaseofCPTcontentinroothadalittlechange,increasedfrom0.036%to0.065%.

3Discussion

UV-Bradiationhasmanyeffectsonplants.AlthoughtherearesomesignificanteffectsaboutUV-Bradiationonplantgrowthanddevelopmentincertainspeciesandecosystems,itturnedoutthattheoveralldamagingeffectsofabove-ambientUV-Baremodestordifficulttodetectundernaturalconditions[17].Anexaminationofmorethan200plantspeciesrevealsthatroughly20%aresensitive, 50%aremildlysensitiveortolerantand30%arecompletelyinsensitivetoUV-Bradiation[18].UV-Bradiationactsasakindofenvironmentalstress,andtheplantwouldhavetoadapttoUV-Bradiationtominimumthedamagewhenthestresslevelreachtoalimitation.WithashortperiodofUV-BradiationinArabidopsis thalianaseedlings,rootswereelongatedandchlorophyllandsolubleproteincontentwereincreasedinleaf,butprolongedUV-Bradiationinhibitedtheelongatedrootlength,causedleafchlorophyllcontent,solubleproteincontentdecrease[19].TheeffectsofenhancedUV-Bradiationonplantphysiology,morphology,growthandbiomasshavebeeninvestigatedextensively.EnhancedUV-Bradiationmayexertanadverseinfluenceonthephysiologicalandbiochemicalprocessesofplants.Inthisstudy,wereportedtheresponsesofC. acuminataplanttoenhancedUV-Bradiation.ThisissupportedbytheearlierfindingsofintraspecificresponsesinflavonoidmetabolisminCucumis sativus[20],soybean[21]andA. thaliana[22]andinflavonoidcontentandchlorophyllcontentdecreasedinrice[23].

UV-BradiationhadobviouseffectsonchlorophyllcontentsofC. acuminata.TheUV-Bradiationmechanismofdecreasingchlorophyllcontentswasstillnotclear.ChangesinchlorophyllcontentshaveoftenbeenusedasanindextoassessthedegreesofUV-Bradiationsensitivity.Inthisstudy,chlorophyllcontentsinC. acuminataleaveswerealsosensitivetoenhancedUV-Bradiation.UV-Bradiationsignificantlydecreasedchlorophyllcontents,primarilybecauseUV-Bradiationdestroyedthestructureofthechloroplast,inhibitedthesynthesisofnewchlorophyllanddestroyedthestructureofchloroplastenvelopemembraneandincreasedthedegradationofchlorophyll.Yanget al.[24]reportedthatUV-Bradiationreducedthephotosyntheticpigmentinleaves(includingthecontentsofchlorophyllandcarotenoid,especiallythecontentofchlorophylla).ZhangindicatedthatUV-Bradiationofdifferentintensitycanmakethegrowth,chlorophyllcontentsdecreaseinVicia fabaseeding[25].TheseresultsshowedthatenhancedUV-Bradiationmadetheplantchlorophylldamage,changedtheproportionofchlorophyllaandchlorophyllb,affectedtheformationofphotosyntheticproteincomplexes,andinhibitedtheformationoforganelles.

Freeprolineaccumulationhasbeenobservedinresponsetoawiderangeofabioticandbioticstressesinplants.Prolineisconsideredtobeoneofthefirstmetabolicresponsestostress,andisperhapsasecondmessenger[29].Environmentalfactorsincludingwaterdeprivation,salinization,highandlowtemperature,heavymetaltoxicity,pathogeninfection,nutrientdeficiency,atmosphericpollutionandUV-radiationinducetheelevationoftheprolinelevelinplants.InC. acuminataplant,enhancedUV-BradiationmadeFprocontentincrease,itmaybeanadaptiveresponsetoresistUV-Bradiationstress.AnegativecorrelationbetweenSODactivityandFprocontentwasfoundunderUV-BstressconditioninC. acuminata.

MDAistheproductofmembranelipidperoxidationwhentheplanttissuesufferedoxidativestress,whichreflectsthedegreeofcellmembranelipidperoxidationandtheplanttorespondtostress.Inthispaper,MDAcontentshavenosignificantdifferencebetween6hUV-Bradiationcomparedwiththecontrol,however,MDAcontentwassignificantlyincreasedafter8hUV-Btreatment.AlowdoseofUV-BstressinducedtheproductionofacertainamountofROS,whileinherentSODinC. acuminatarapidlyeliminatedtheseROS,andresultedinthedecreaseofSODactivity.WhenthetimeofUV-Btreatmentreachedto8hdaily,alargenumberofROSweregeneratedandcausedmembranelipidperoxidation,soMDAcontentwassignificantlyincreased.Inconclusion,thereisacertaincorrelationamongthechangeofSODactivity,FprocontentandMDAcontentunderUV-Bstress,thedecreaseofSODactivityisaccompaniedbytheincreaseofMDAor/andFprocontent.

Undertheconditionofadversity,inadditiontotheplantphysiologicalindicescanbeinducedsomechanges,thesecondarymetabolismofplantwillalsobechanged.Plantsinteractwiththeirenvironmentbyproducingadiversearrayofsecondarymetabolites,oneofwhichisalkaloid.Bioticandabioticenvironmenthaveimportantrolesinthesecondarymetabolizingofplant.Asasecondarymetabolite,CPTmayplayacrucialroleduringbioticandabioticstresses,whichposeagreatimpactonalkaloidbiosynthesisandaccumulation[30].TheincreaseofalkaloidaccumulationduringseedlingsdevelopmentwasobservedandthisshowedthatCPTmayplayadefensivefunctionfortheplantsduringthisvulnerablestageoftheirlifecycle.UVlightresponsiveregionsinthepromoterofthetryptophandecarboxylase(tdc)geneinCathatranthus roseushadbeenidentified[31].Inourstudy,UV-BradiationcanobviouslyenhanceCPTcontentinC. acuminata,wehypothesizethatUV-BmightstimulatetheexpressionoftdcgeneandincreaseCPTaccumulationinC. acuminata.CPTaccumulationinducedbyUV-BradiationdemonstratedthatCPTwasinvolvedinplantdefenseagainstUV-Bradiation.WhenC. acuminatasufferedUV-Bradiationinalowdose(2h, 4h),CPTcontentwasincreasedslowly;withthetimeofUV-Bradiationincreasing(6h, 8h),CPTcontentwasincreasedrapidly,whichillustratedthatthelongtimeofUV-BradiationcausedcertaindamagetoC. acuminata,andC. acuminatadefensedprimarilybyincreasingthesecondarymetabolites-CPT.Moreover,CPTcontentsinyoungleavesandshootswereincreasedmoreobviouslythanthoseinroot,itindicatedthatenhancedUV-BradiationcouldpriorityimproveCPTaccumulationofaerialorganinC. acuminata,becauseaerialorganmainlysufferedUV-Bstress.

EnhancedUV-BradiationcausedcertaindamagetoC. acuminata,notonlyaffectsthemorphologyofC. acuminata[10],butalsoaffectsthephysiologicalandbiochemicalmetabolism.UnderthestressofUV-B, C. acuminataitselfdefensedthisstressbychangingphysiologicalindices(i.e.,SODactivity,MDAandFprocontent)andsecondarymetabolismtoaccumulateCPT.Therefore,thechangesofphysiologicalindicesandCPTaccumulationarealsotheadaptivemechanismtoresponsetothestressofenhancedUV-BradiationinC. acuminata.Furthermore,intheindustryplantingofC. acuminata,themethodofsupplementing8hUV-BradiationdailytopromotetheincreaseofCPTcontentisfeasible.

References:

[1]中國(guó)科學(xué)院中國(guó)植物編輯委員會(huì),中國(guó)植物志[M].北京:科學(xué)出版社,1983.52(2):144-147.

[2]WALLME,WANIMC,COOKECE, et al.Plantantitumoragents,theisolationandstructureofcamptothecin,anovelalkaliodalleukaemiaandtumorinhibitorfromCamptotheca acuminata [J]. Journal of American Chemical Society, 1966, 88(16): 3 888-3 890.

[3]KJELDSENE,SVEJSTRUPJQ,GROMOVAII, et al.CamptothecininhibitsboththecleavageandrelegationreactionsofeukaryoticDNAtopoisomeraseI[J]. Journal of Molecular Biology, 1992, 228(4): 1 025-1 030.

[4]PRIELE,SHOWWALTERSD,ROBERTSM, et al.ThetopoisomeraseIinhibitor,camptothecin,inhibitsequineinfectionsanemiavirusreplicationinchronicallyinfectedCF2Thcells[J]. Journal of Virology, 1991, 65(8): 4 137-4 141.

[5]GREEMERSJP,DESPASR,FAVALLIG, et al.Topotecan,anactivedruginthesecond-linetreatmentofepithelialovariancancer:resultsofalargeEuropeanphaseIIstudy[J]. Journal of Clinical Oncology, 1996, 14(12): 3 056-3 061.

[6]LIUZJ.Drought-inducedinvivosynthesisofcamptothecininCamptotheca acuminataseedlings[J]. Physiologia Plantarum, 2000, 110(4): 483-488.

[7]LPEZ-MEYERM,NESSLERCL.TryptophandecarboxylaseisencodedbytwoantonomouslyregulatedgenesinCamptotheca acuminatawhicharedifferentiallyexpressedduringdevelopmentandstress[J]. The Plant Journal, 1997, 11(6): 1 167-1 175.

[8]SONGSH,BYUNSY.CharacterizationofcellgrowthandcamptothecinproductionincellculturesofCamptotheca acuminata[J]. Journal of Microbiology and Biotechnology, 1998, 8(6): 631-638.

[9]VENUGOPALANA,SRIVASTAVAS.Enhancedcamptothecinproductionbyethanoladditioninthesuspensioncultureoftheendophyte, Fusarium solani [J]. Bioresource Technology, 2015, 188: 251-257.

[10]王海霞,劉文哲.增強(qiáng)UV-B輻射對(duì)喜樹(shù)幼苗生物量和兩種生物堿含量的影響[J].植物科學(xué)學(xué)報(bào),2011, 29(6): 712-717.

WANGHX,LIUWZ,EffectsofenhancedUV-Bradiationonbiomassandcontentsofcamptothecinand10-hydroxy-camptothecininCamptotheca acuminata [J]. Plant Science Journal, 2011, 29(6): 712-717.

[11]張振清.植物生理學(xué)實(shí)驗(yàn)手冊(cè)[M].上海:上海科學(xué)技術(shù)出版社, 1985: 134-135.

[12]HEATHRI,PACKERL.Photoperoxidationinisolatedchloroplasts:I.Kineticsandstoichiometryoffattyacidperoxidation[J]. Archives of Biochemistry and Biophysics, 1968, 125(1): 189-198.

[13]BATESLS,WALDRONRP,TEAREID.Rapiddeterminationoffreeprolineforwater-stressstudies[J]. Plant and Soil, 1973, 39(1): 205-208.

[14]GIANNOPOLITISCN,RIESSK.Superoxidedismutases.I.Purificationandquantitativerelationshipwithwater-solubleproteininseedlings[J]. Plant Physiology, 1977, 59(2): 315-318.

[15]王玲麗.喜樹(shù)營(yíng)養(yǎng)器官的結(jié)構(gòu)及喜樹(shù)堿含量動(dòng)態(tài)變化的研究[D].西安:西北大學(xué),2006.

[16]VANHENGELAJ,HARKESMP,WICHERSHJ, et al.CharacterizationofcallusformationandcamptothecinproductionbycelllinesofCamptotheca acuminata[J]. Plant Cell, Tissure and.Organ Culture, 1992, 28(1): 11-18.

[17]SEARLESPS,FLINTSD,CALDWELLMM.Ameta-analysisofplantfieldstudiessimulatingstratosphericozonedepletion[J]. Oecologia, 2001, 127(1): 1-10.

[18]TERAMURAAH.Effectsofultraviolet-Bradiationonthegrowthandyieldofcropplants[J]. Physiologia Plantarum, 1983, 58(3): 415-427.

[19]HANW,HANR.EffectofdifferenttimesofUV-BradiationonseedlinggrowthofArabidopsis thaliana[J]. Chinese Bulletin of Botany, 2015, 50(1): 40-46.

[20]MURALINS,TERAMURAAH.IntraspecificdifferencesinCucumis sativussensitivitytoultraviolet-Bradiation[J]. Physiologia Plantarum, 1986, 68(4): 673-677.

[21]D’SURNEYSJ,TSCHAPLINSKITJ,EDWARDSNT, et al.BiologicalresponsesoftwosoybeancultivarsexposedtoenhancedUV-Bradiation[J]. Environmental and Experimental Botany, 1993, 33(3): 347-356.

[22]FISCUSEL,PHILBECKR, et al.GrowthofArabidopsisflavonoidmutantsundersolarradiationandUVfilters[J]. Environmental and Experiment Botany, 1999, 41(3): 231-245.

[23]TERAMURAAH,ZISKALH,SZTEINAE.ChangesingrowthandphotosyntheticcapacityofricewithincreasedUV-Bradiation[J]. Physiologia Plantarum, 1991, 83(3): 373-380.

[24]楊景宏,陳拓,王勛陵.增強(qiáng)UV-B輻射對(duì)小麥葉片內(nèi)源ABA和游離脯氨酸的影響[J]. 生態(tài)學(xué)報(bào), 2000, 20(1): 39-42.

YANGJH,CHENT,WANGXL.EffectofenhancedUV-BradiationonendogenousABAandfreeprolinecontentsinwheatleaves[J]. Acta Ecologica Sinica, 2000, 20(1): 39-42.

[25]張紅霞,吳能表,胡麗濤,等.不同強(qiáng)度UV-B輻射脅迫對(duì)蠶豆幼苗生長(zhǎng)及葉綠素?zé)晒馓匦缘挠绊慬J]. 西南師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2010, 35(1): 105-110.

ZHANGHX,WUNB,HULT, et al.TheeffectsofdifferenttreatmentswithUV-BradiationstressonseedlinggrowthandcharacterofchlorophyllfluorescenceofVicia fabaL..[J]. Journal of Southwest China Normal University (NaturalScienceEdition), 2010, 35(1): 105-110.

[26]馮建燦,張玉潔,楊天柱.低溫脅迫對(duì)喜樹(shù)幼苗SOD活性、MDA和脯氨酸含量的影響[J].林業(yè)科學(xué)研究,2002, 15(2):197-202.

FENGJC,ZHANGYJ,YANGTZ.Effectoflowtemperaturestressonthemembrane-lipidperoxidationandtheconcentrationoffreeprolineinCamptotheca acuminataseedling[J]. Forest Research, 2002, 15(2):197-202.

[27]陳拓,任紅旭,王勛陵.UV-B輻射對(duì)小麥葉抗氧化系統(tǒng)的影響[J]. 環(huán)境科學(xué)學(xué)報(bào),1999, 19(4):453-455.

CHENT,RENHX,WANGXL.InfluenceofenhancedUV-Bradiationonantioxidantsystemsinwheatleaves[J]. Acta Scientiae Circumstantiae, 1999, 19(4): 453-455.

[28]馮國(guó)寧,安黎哲,馮虎元,等.增強(qiáng)UV-B輻射對(duì)菜豆蛋白質(zhì)代謝的影響[J].植物學(xué)報(bào),1999, 41(8): 833-836.

FENGGN,ANLZ,FENGHY, et al.EffectsofenhancedUV-Bradiationonproteinmetabolismofbeanleaves[J]. Acta Botanica Sinica, 1999, 41(8): 833-836.

[29]HAREPD,CRESSWA,Metabolicimplicationsofstress-inducedprolineaccumulationinplants[J]. Plant Growth Regulation, 1997, 21(2): 79-102.

[30]祖元?jiǎng)?唐中華,于景華,等.喜樹(shù)幼苗中喜樹(shù)堿和10-羥基喜樹(shù)堿對(duì)熱激的響應(yīng)特點(diǎn)和意義[J]. 植物學(xué)報(bào),2003, 45(7): 809-814.

ZUYG,TANGZH,YUJH, et al.Differentresponsesofcamptothecinand10-hydroxy-camptothecintoheatshockinCamptotheca acuminataseedlings[J]. Acta Botanica Sinica, 2003, 45(7): 809-814.

[31]OUWERKERKPBF,HALLARDD,VERPOORTER, et al.IdentificationofUV-Blight-responsiveregionsinthepromoterofthetryptophandecarboxylasegenefromCatharanthus roseus[J]. Plant Molecular Biology,1999, 41(4): 491-503.

(編輯:潘新社)

EffectsofEnhancedUltraviolet-BRadiationonPhysiologicalIndicesandCamptothecinContentinCamptotheca acuminataDecne

WANGLingli1,2,ZHOUXiaojun2,3,LIUWenzhe2*

(1DepartmentofLifeScience,YunchengUniversity,Yuncheng,Shanxi044000,China; 2CollegeofLifeScience,NorthwestUniversity,Xi’an, 710069,China;3SchoolofLifeSciences,LuoyangNormalUniversity,Luoyang,He’nan471022,China)

Abstract:Camptotheca acuminata Decne. (Nyssaceae) is a major source of anticancer camptothecin (CPT). It is imperative to induce CPT accumulation in order to develop CPT production strategies to satisfy clinical uses of CPT. In this study, two-year-old C. acuminata were dealt 8 h each day with UV-B radiation for 12 days, and one-year-old C. acuminata were respectively arranged to radiate 2 h,4 h,6 h and 8 h with UV-B radiation each day for 12 days. The contents of chlorophyll, MDA and free proline (Fpro), the activity of SOD in leaf and CPT content in young leaves, young shoots and root were separately measured after UV-B treatment. In order to reveal that camptothecin is the defense product of UV-B stress, the effects of UV-B radiation on the physiological indices and secondary metabolites were analyzed. The results showed that: (1) in two-year-old C. acuminata, chlorophyll content was significantly decreased, MDA, Fpro and CPT contents were significantly increased after 8 h UV-B treatment daily. It indicated that 8 h UV-B radiation caused great stress influences on two-year-old C. acuminata. (2) In one-year-old C. acuminata, with the time of UV-B radiation increasing, chlorophyll content was gradually decreased; Fpro content was significantly increased; MDA content had no significantly difference between 2 h and 6 h UV-B radiation, but significantly increased after 8 h radiation compared with the control; SOD activity decreased firstly, then increased, lastly decreased with the time of UV-B radiation prolonging every day. It showed that 8 h UV-B radiation also caused stress influences on one-year-old C. acuminata. (3) CPT contents in vegetative organs of one-year-old C. acuminata were gradually increased with the time of UV-B radiation prolonging, and the contents were the highest after 8 h UV-B radiation each day. Moreover, CPT content increased more obviously in young leaves and young shoots than those in roots. It confirmed that enhanced UV-B radiation caused certain damage to C. acuminata, and C. acuminata responded to this stress by not only changing physiological indices, but also changing secondary metabolism to accumulate CPT.

Key words:Camptotheca acuminata; ultraviolet-B (UV-B) radiation; camptothecin (CPT) content; physiological index

文章編號(hào):1000-4025(2016)05-0979-08

doi:10.7606/j.issn.1000-4025.2016.05.0979

收稿日期:2015-10-12;修改稿收到日期:2016-03-28

基金項(xiàng)目:國(guó)家自然科學(xué)基金(31270428)

作者簡(jiǎn)介:王玲麗(1980-),女,在讀博士研究生,講師,主要從事結(jié)構(gòu)植物學(xué)研究。 E-mail:wanglingli_521@163.com *通信作者:劉文哲,教授,博士生導(dǎo)師,主要從事結(jié)構(gòu)植物學(xué)與繁殖生態(tài)學(xué)研究。E-mail: lwenzhe@nwu. edu.cn

中圖分類(lèi)號(hào):Q945.79;

文獻(xiàn)標(biāo)志碼:A

主站蜘蛛池模板: 日韩在线视频网| 亚洲国产欧美中日韩成人综合视频| 午夜精品一区二区蜜桃| 91精品国产综合久久不国产大片| 国产精品成人久久| 欧美成人精品一级在线观看| 久久精品国产精品青草app| 思思热在线视频精品| 国产在线98福利播放视频免费| 东京热一区二区三区无码视频| 亚洲天堂自拍| 国产永久免费视频m3u8| www亚洲天堂| 亚洲无码37.| 中文字幕在线欧美| 久久亚洲黄色视频| 无遮挡国产高潮视频免费观看| 亚洲精品你懂的| 欧美va亚洲va香蕉在线| 亚洲中文字幕无码mv| 日韩精品亚洲人旧成在线| 四虎精品黑人视频| 亚洲美女高潮久久久久久久| 国产黑丝一区| 亚洲欧美日韩成人高清在线一区| 国产99精品久久| 精品人妻AV区| 亚洲黄网在线| 婷婷色中文网| 夜夜操国产| 亚洲精品第一在线观看视频| 99在线小视频| 国产a v无码专区亚洲av| 色哟哟国产成人精品| 免费人成网站在线观看欧美| 国产欧美精品午夜在线播放| 久久a级片| 国产精品美女免费视频大全| 99久久精品免费看国产免费软件| 国产视频入口| 真实国产乱子伦高清| 欧美黄色a| 911亚洲精品| 男女男免费视频网站国产| 制服丝袜无码每日更新| 色婷婷综合在线| 尤物成AV人片在线观看| 爆乳熟妇一区二区三区| 国产日本欧美亚洲精品视| 91福利在线观看视频| 日本www色视频| 国产高清在线丝袜精品一区| 欧美成人一区午夜福利在线| 夜夜爽免费视频| 欧美成一级| 久久综合五月| 国产精品人莉莉成在线播放| 亚洲区一区| 97国产在线观看| 18禁影院亚洲专区| 色综合天天娱乐综合网| 久久国产精品夜色| 91在线国内在线播放老师| av在线无码浏览| 99视频在线观看免费| 97在线免费| 亚洲天堂成人| 毛片一级在线| 国产高清免费午夜在线视频| 中文字幕人妻av一区二区| 欧美中文字幕一区二区三区| 又粗又大又爽又紧免费视频| 26uuu国产精品视频| 另类重口100页在线播放| 国产一区三区二区中文在线| 国产精品美乳| 国产成人区在线观看视频| 国产流白浆视频| 国产香蕉97碰碰视频VA碰碰看| 免费一级α片在线观看| 婷婷综合亚洲| 狠狠色成人综合首页|