王明梁


摘要:華北克拉通破壞過程中,巖石圈地幔巖石類型從方輝橄欖巖向二輝橄欖巖轉變。對于這一轉變過程,不同學者提出了不同的假說。其中以拆沉作用和底侵作用最具代表性。本文從熔體——地幔巖石相互作用的角度,系統的總結了前人關于熔體——地幔巖石(橄欖巖)反應的研究結果。為正確認識這個過程提供有益的啟示。
關鍵詞:華北克拉通;熔體——地幔巖石反應;實驗巖石學
1.前言
華北克拉通位于中國東部,如圖1所示,可以細分為東中西三個部分(吳福元等,2008),其中東西兩個塊體在1.8Ga以前通過中部造山帶拼合而成,完成了克拉通化,并且在漫長的地質歷史時期內保持穩定(翟明國等,2007;翟明國,2008)。現有證據表明,在古生代以前(含古生代),華北克拉通一直保持著以方輝橄欖巖為主的克拉通型巖石圈地幔(古生代地幔包體的巖石類型以方輝橄欖巖為主,少量分布二輝橄欖巖),然而到了新生代,克拉通東部地塊的巖石圈地幔轉變為以二輝橄欖巖為主(新生代地幔包體的巖石類型以二輝橄欖巖為主,有少量年齡古老的方輝橄欖巖殘留)的大洋型地幔(Fanetal.,2000;Gaoetal.,2008;Xu,2001;Zhangetal.,2007;高山等,2009;路鳳香,2010;吳福元等,2008;鄭建平等,2006;鄭建平等,2007;周新華,2006)。這說明在中生代,華北地區的巖石圈地幔經歷了強烈的改造作用,這種改造作用可能直接導致了華北克拉通的破壞。
2.華北克拉通破壞過程中的熔體——地幔巖石反應
大量的研究已經達成共識:在中生代華北地區巖石圈地幔改造過程中,巖石圈地幔極有可能受到了來自軟流圈地幔的硅酸鹽熔體或來自地殼的硅酸鹽熔體的交代,這種交代作用被認為是巖石圈地幔改造的重要原因之一(Zhangetal.,2007;徐義剛,1998,2006;張宏福,2005,2009;張宏福等,2005),因此華北地區巖石圈地幔在中生代經歷的熔體——巖石交代反應成為了一個重要的研究課題。
前人對中生代華北克拉通巖石圈地幔經歷的硅酸鹽熔體——巖石交代作用進行了大量的研究,重要的認識可以歸納為以下幾點:
(1)富硅熔體交代巖石圈地幔形成(斜方)輝石巖。富硅熔體可能是:①拆沉的地殼部分熔融產生的熔體(Gaoetal.,2004;Gaoetal.,2008;Xuetal.,2008a;高山等,2009;劉海泉等,2010);②深俯沖的地殼部分熔融產生的熔體(Chen,2005;Zheng,2012;Zhengetal.,2011)。富硅熔體產生后,在上升過程中與地幔巖石發生熔體——巖石交代反應,反應的產物是輝石。大多數學者(Kelemenetal.,1998;Liuetal.,2005;高山等,2009)認為富硅熔體與巖石圈地幔巖石反應的產物主要是斜方輝石,但有實驗表明這種交代反應在低壓下(2.0GPa)可以形成單斜輝石和斜方輝石(王超等,2010),兩種認識存在明顯的分歧,需要做進一步研究。
(2)貧硅熔體交代巖石圈地幔形成(二輝)橄欖巖。貧硅熔體可能是:①來自軟流圈的玄武質熔體(Xu,2001;Xuetal.,2008b;Zhengetal.,2007;路鳳香等,2006;徐義剛,1999,2006;鄭建平等,2006,2007);②受到富硅熔體交代的巖石圈地幔發生部分熔融產生的玄武質熔體(Gaoetal.,2008;高山etal.,2009)。貧硅熔體產生后,在上升的過程中與巖石圈地幔發生交代反應。一般認為貧硅熔體與巖石圈地幔巖石反應將形成橄欖石和輝石(張宏福,2005,2009),這種認識的依據是低壓下貧硅熔體與橄欖巖反應的實驗結果(如Shawetal.,2007),缺乏高壓下(≥3.0GPa)貧硅熔體與地幔巖石反應的實驗支持。
圖中空心方形和菱形表示地幔包體產出位置,古生代地幔包體的巖石類型以方輝橄欖巖為主,新生代在東部地塊產出的地幔包體巖石類型以二輝橄欖巖為主,新生代在西部地塊產出的地幔包體巖石類型以方輝橄欖巖為主。這些地幔包體是研究華北克拉通巖石圈地幔類型轉變的關鍵樣品。
3. 硅酸鹽熔體與地幔巖石(礦物)反應的實驗研究現狀
硅酸鹽熔體與地幔巖石(礦物)反應的實驗研究最早可以追溯到Sekineetal(1982)的研究,他們的實驗目的是為了研究島弧地區高Mg#安山巖的成因。自那之后,大量的學者(如表1所示)經過30多年的努力,在硅酸鹽熔體交代地幔巖石(礦物)的實驗研究方面取得了一系列的成果,總結起來可以歸類為以下兩個方面:
(1)富硅熔體(SiO2>52wt%的安山質熔體、花崗質熔體)與二輝橄欖巖的反應,反應的產物主要為斜方輝石(Opx,下同),在壓力較高時有石榴子石(Grt,下同)生成,個別情況下(低溫或者富鈣)可以形成單斜輝石,即L+富硅熔體→Opx±Grt±Cpx(單斜輝石,下同);
(2)貧硅熔體(主要是SiO2≤52wt%的玄武質熔體)與二輝橄欖巖反應,在壓力較低的情況下(≤2.0GPa)反應產物的礦物組合是Opx±Ol(橄欖石,下同)±Cpx,即L+貧硅熔體→Opx±Ol±Cpx。另外,在時間較短(≤24h)的實驗中,貧硅熔體與地幔巖石的反應更多地表現出了溶解行為,即貧硅熔體溶解橄欖巖中的輝石,殘留下橄欖石(純橄巖帶)或者橄欖石+斜方輝石(方輝橄欖巖帶)。
表中代號的含義是:Ol-橄欖石、Opx-斜方輝石、Cpx-單斜輝石、Grt-石榴子石,Phl-金云母,Cc-方解石,L-熔體
4. 結論與展望
硅酸鹽熔體與地幔巖石反應的實驗研究才剛剛開始,已經得到的正確結論主要有:
(1)富硅熔體交代地幔主要形成斜方輝石。
(2)貧硅熔體低壓下交代地??梢孕纬砷蠙焓?/p>
但是關于高壓下的硅酸鹽熔體——巖石反應的研究還比較少,特別是關于微量元素的研究更是缺乏。這進一步限制了我們認識華北克拉通破壞這一重要地質過程。因此在今后的工作中,需要進一步加強硅酸鹽熔體——地幔巖石反應的實驗研究。
參考文獻:
[1] 吳福元, 徐義剛, 高山, 鄭建平, 2008. 華北巖石圈減薄與克拉通 破壞研究的主要學術爭論. 巖石學報, v. 24, p. 1145-1174.
[2] 翟明國, 彭澎, 2007. 華北克拉通古元古代構造事件. 巖石學報, v.23, p. 2665-2682.
[3] 翟明國, 2008. 華北克拉通中生代破壞前的巖石圈地幔與下地殼. 巖石學報, v. 24, p. 2185-2204.
[4] Fan, W.-M., Zhang, H.-F., Baker, J., Jarvis, K.E., Mason, R.P.D., and Menzies, M.A., 2000. On and Off the North China Craton: Where is the Archaean Keel? Journal of Petrology, v. 41, p. 933-950.
[5] Gao, S., Rudnick, R.L., Xu, W.-L., Yuan, H.-L., Liu, Y.-S., Walker, R.J., Puchtel, I.S., Liu, X., Huang, H., Wang, X.-R., and Yang, J., 2008. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton. Earth and Plan etary Science Letters, v. 270, p. 41-53.
[6] Xu, Y.-G., 2001. Thermo-tectonic destruction of the archaean lithospheric keel beneath the sino-korean craton in china evidence, timing and mechanism. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, v. 26, p. 747-757.
[7] Zhang, H.-F., Nakamura, E., Sun, M., Kobayashi, K., Zhang, J., Ying, J.-F., Tang, Y.-J., and Liu, L.-F., 2007. Transformation of subcontinental lithospheric mantle through peridotite-melt reaction: evidence from a highly fertile mantle xenolith from the North China craton. International Geology Review, v. 49, p. 658-679.
[8] 高山, 章軍鋒, 許文良, 劉勇勝, 2009. 拆沉作用與華北克拉通破 壞. 科學通報, v. 54, p. 1962-1973.
[9] 路鳳香, 2010. 華北克拉通古老巖石圈地幔的多次地質事件:來 自金伯利巖中橄欖巖捕虜體的啟示. 巖石學報, v. 26, p. 3177- 3188.
[10] 鄭建平, 路鳳香, Griffin, W.L., 余淳梅, 張瑞生, 袁曉萍, 吳秀玲, 2006. 華北東部橄欖巖與巖石圈減薄中的地幔伸展和侵蝕置換 作用. 地學前緣, v. 13, p. 76-86.
[11] 鄭建平, 路鳳香, 余淳梅, 湯華云, 張志海, 儲玲林, 2007. 華北克 拉通破壞的物理、化學過程:地幔橄欖巖證據. 礦物巖石地球化 學通報, v. 26, p. 327-335.
[12] 周新華, 2006. 中國東部、新生代巖石圈轉型與減薄研究若干問 題. 地學前緣, v. 13, p. 50-64.
[13] 徐義剛, 1998. 上地幔熔體-巖石相互作用與大陸地幔演化. 地 學前緣, v. 5, p. 76-85.
[14] 徐義剛, 2006. 用玄武巖組成反演中—新生代華北巖石圈的演 化. 地學前緣, v. 13, p. 93-104.
[15] 張宏福, 2005. 橄欖巖-熔體的相互作用: 巖石圈地幔組成轉變 的重要方式. 地學前緣, v. 13, p. 65-75.
[16] 張宏福, 2009. 橄欖巖-熔體相互作用: 克拉通型巖石圈地幔能 夠被破壞之關鍵. 科學通報, v. 54, p. 2008-2026.
[17] 張宏福, 英基豐, 徐平, 馬玉光, 2004. 華北中生代玄武巖中地幔 橄欖石捕虜晶: 對巖石圈地幔置換過程的啟示. 科學通報, v. 49, p. 784-789.
[18] Gao, S., Rudnick, R.L., Yuan, H.-L., Liu, X.-M., Liu, Y.-S., Xu, W.-L., Ling, W.-L., Ayers, J., Wang, X.-C., and Wang, Q.- H., 2004. Recycling lower continental crust in the North China craton. Nature, v. 432, p. 892-897.
[19] Xu, W., Hergt, J.M., Gao, S., Pei, F., Wang, W., and Yang, D., 2008a. Interaction of adakitic melt-peridotite: Implications for the high-Mg# signature of Mesozoic adakitic rocks in the eastern North China Craton. Earth and Planetary Science Letters, v. 265, p. 123-137.
[20] 劉海泉, 閆峻, 趙建新, 安亞軍, 2010. 中國東部部分地區新生代 巖石圈地幔的成因:主量和微量元素制約. 巖石學報, v. 26, p. 2850-2068.
[21] Chen, L.-H., and Zhou X.-H, 2005. Subduction-related metaso matism in the thinning lithosphere: Evidence from a composite du nite-orthopyroxenite xenolith entrained in Mesozoic Laiwu high- Mg diorite, North China Craton. Geochemistry Geophysics Geo systems, v. 6, (online)
[22] Zheng, Y.-F., 2012. Metamorphic chemical geodynamics in conti nental subduction zones. Chemical Geology, v. 328, p. 5-48.
[23] Zheng, Y.-F., Xia, Q.-X., Chen, R.-X., and Gao, X.-Y., 2011. Partial melting, fluid supercriticality and element mobility in ultra high-pressure metamorphic rocks during continental collision. Earth-Science Reviews, v. 107, p. 342-374.
[24] Kelemen, P.B., Hart, S.R., and Bernstein, S., 1998. Silica enrich ment in the continental upper mantle via melt-rock reaction. Earth and Planetary Science Letters, v. 164, p. 387-406.
[25] Liu, Y., Gao, S., Lee, C., Hu, S., Liu, X., and Yuan, H., 2005. Melt–peridotite interactions: Links between garnet pyroxenite and high-Mg# signature of continental crust. Earth and Planetary Sci ence Letters, v. 234, p. 39-57.
[26] 王超, 金振民, 高山, 章軍鋒, 鄭曙, 2010. 華北克拉通巖石圈破 壞的榴輝巖熔體-橄欖巖反應機制: 實驗約束. 中國科學(D 輯), v. 40, p. 541-555.
[27] Xu, Y.-G., Blusztajn, J., Ma, J.-L., Suzuki, K., Liu, J.F., and Hart, S.R., 2008b. Late Archean to Early Proterozoic lithospheric mantle beneath the western North China craton: Sr–Nd–Os isotopes of peridotite xenoliths from Yangyuan and Fansi. Lithos, v. 102, p. 25-42.
[28] Zheng, J., Griffin, W., Oreilly, S., Yu, C., Zhang, H., Pearson, N., and Zhang, M., 2007. Mechanism and timing of lithospheric modi fication and replacement beneath the eastern North China Craton: Peridotitic xenoliths from the 100 Ma Fuxin basalts and a regional synthesis. Geochimica et Cosmochimica Acta, v. 71, p. 5203-5225.
[29] Shaw, C.S.J., and Dingwell, D.B., 2007. Experimental peridotite– melt reaction at one atmosphere: a textural and chemical study. Contributions to Mineralogy and Petrology, v. 155, p. 199-214.
[30] Sekine, T., and Wyllie, P.J., 1982. The system granite-peridotite- H2O at 30 kbar, with applications to hybridization in subduction zone magmatism. Contributions to Mineralogy and Petrology, v. 81, p. 190-202. [33] Thibault, Y., Edgar, A.D., and Lloyd, F.E., 1992. Experimental investigation of melts from a carbonated phlog opite lherzoliteImplications for metasomatism in the continental lithospheric mantle. American Mineralogist, v. 77, p. 784-794.
[31] Johnston, A.D., and Wyllie, P.J., 1989. The system tonalite-peri dotite-H2O at 30 kbar, with applications to hybridization in sub duction zone magmatism. Contributions to Mineralogy and Petrol ogy, v. 102, p. 257-264.
[32] Kelemen, P.B., Joyce, D.B., Webster, J.D., and Holloway, J.R., 1990. Reaction between ultramafic rock and fractionating basaltic magma II. Experimetal investigation of reaction between olivine tholeiite and harzburgite at 1150-1050°C and 5 kb. Journal of Pe trology, v. 31, p. 99-134.
[33] Thibault, Y., Edgar, A.D., and Lloyd, F.E., 1992. Experimental in vestigation of melts from a carbonated phlogopite lherzoliteImplica tions for metasomatism in the continental lithospheric mantle. American Mineralogist, v. 77, p. 784-794.
[34] Sen, C., and Dunn, T., 1994. Experimental modal metasomatism of a spinel lherzolite and the production of amphibole-bearing peri dotite. Contributions to Mineralogy and Petrology, v. 119, p. 422- 432.
[35] Rapp, R.P., Shimizu, N., Norman, M.D., and Applegate, G.S., 1999. Reaction between slab-derived melts and peridotite in the mantle wedge experimental constraints at 3.8 GPa. Chemical Geol ogy, v. 160, p. 335-356.
[36] Shaw, C.S.J., 1999. Dissolution of orthopyroxene in basanitic mag ma between 0.4 and 2 GPa: further implications for the origin of Si-rich alkaline glass inclusions in mantle xenoliths. Contributions to Mineralogy and Petrology, v. 135, p. 114-132
[37] Falloon, T.J., Danyushevsky, L.V., and Green, D.H., 2001. Perido tite melting at 1 GPa: reversal experiments on partial melt composi tions produced by peridotite–basalt sandwich experiments. Journal of Petrology, v. 42, p. 2363-2390.
[38] Morgan, Z., and Liang, Y., 2003. An experimental and numerical study of the kinetics of harzburgite reactive dissolution with appli cations to dunite dike formation. Earth and Planetary Science Let ters, v. 214, p. 59-74.
[39] Morgan, Z., and Liang, Y., 2005. An experimental study of the ki netics of lherzolite reactive dissolution with applications to melt channel formation. Contributions to Mineralogy and Petrology, v. 150, p. 369-385.
[40] 于洋, 許文良, 劉曉旸, 楊斌, 2009. 高溫高壓條件下角閃石榴輝 石巖-橄欖巖反應: 初步實驗結果及其地質意義. 自然科學進 展, v. 19, p. 644-651.
[41] Mallik, A., and Dasgupta, R., 2012. Reaction between MORB- eclogite derived melts and fertile peridotite and generation of ocean island basalts. Earth and Planetary Science Letters, v. 329-330, p. 97-108.
[42] Wang, C., Liang, Y., Xu, W., and Dygert, N., 2013. Effect of melt composition on basalt and peridotite interaction: laboratory dissolu tion experiments with applications to mineral compositional varia tions in mantle xenoliths from the North China Craton. Contribu tions to Mineralogy and Petrology, v. 166, p. 1469-1488.