劉清菁 綜述 蔣曉東 審校
?
抗血管生成藥物對腫瘤免疫調節影響的研究進展
劉清菁綜述蔣曉東審校
摘要惡性腫瘤的治療已進入“精準治療”時代,抗腫瘤血管生成的靶向治療是近年非常熱門的研究方向,而腫瘤免疫逃逸是導致腫瘤治療效果不理想的重要原因之一。抗血管生成治療不僅能夠抑制血管生成,使腫瘤退縮,并且能夠減少腫瘤微環境中免疫抑制性細胞數量,提高腫瘤浸潤淋巴細胞(tumor-infiltrating lymphocyte,TIL)、細胞毒性淋巴細胞(cytotoxic lymphocyte,CTL)等的數量,從而克服腫瘤免疫逃逸。本研究對抗血管生成藥物通過改善腫瘤微環境,增強機體抗腫瘤免疫功能進行綜述。
關鍵詞抗血管生成腫瘤免疫逃逸腫瘤微環境
作者單位:徐州醫科大學附屬連云港醫院腫瘤放療科(江蘇省連云港市222002)
腫瘤血管生成在實體腫瘤的生長、侵襲和轉移過程中發揮重要作用。Folkman于1971年提出“血管生成過程可作為抑制實體腫瘤生長的靶點”的假說,從而開創了抗腫瘤血管生成研究的新紀元。腫瘤血管的雜亂無章主要是由于腫瘤組織中促血管生成因子和抗血管生成因子的失衡。在腫瘤促血管生成因子中,血管內皮生長因子(vascular endothelial growth factor,VEGF)及其受體,即血管內皮生長因子受體(vascular endothelial growth factor receptor,VEGFR)被認為是最具潛力的抗血管生成治療靶點,針對VEGF通路的抗血管生成靶向藥物越來越多地用于臨床治療和研究:腎透明細胞癌移植瘤小鼠模型中,舒尼替尼(sunitinib)和阿柏西普均能明顯抑制腫瘤生長[1];結直腸癌肝轉移患者的臨床試驗中,新輔助化療聯合貝伐單抗在客觀療效和疾病控制方面均有成效,尤其能提高完全病理緩解率[2];轉移性胃癌患者臨床試驗中,阿帕替尼相較于安慰劑對照組可明顯提高總生存率和無進展生存期[3];在晚期胃癌或胃食管交界部腺癌患者臨床試驗中,紫杉醇聯合雷莫盧單抗較聯合安慰劑可顯著提高總生存率[4]。此外,還有多靶點抗血管生成藥物,如血管內皮抑素(恩度,rhendostatin,又稱重組人內皮抑素),其聯合化療治療進展期非小細胞肺癌患者時總緩解率和疾病控制率均顯著提高[5]。抗血管生成的作用機制復雜多樣,其中有研究認為抗血管生成治療在阻止腫瘤血管生成的同時還具有調節機體免疫功能的作用。
近年腫瘤持續血管生成和免疫逃逸均被納入腫瘤十大特征之中[6]。腫瘤細胞可分泌大量免疫抑制因子,如轉化生長因子-β(transforming growth factorbeta,TGF-β)、VEGF、白介素-10(interleukin-10,IL-10)、白介素-6(interleukin-6,IL-6)、前列腺素E2 (prostaglandin E2,PGE2)、巨噬細胞集落刺激因子(macrophage colony-stimulating factor,M-CSF)等,抑制免疫細胞如樹突狀細胞(dendritic cells,DC)、細胞毒性淋巴細胞(cytotoxic lymphocyte,CTL)、天然殺傷細胞(natural killer cell,NK細胞)的功能[7-8],并募集大量免疫抑制性細胞至腫瘤組織中,如腫瘤相關巨噬細胞(tumor-associated macrophages,TAM)、調節性T細胞(regulatory T cell,Treg)、髓源性抑制細胞(my?eloid-derived suppressor cells,MDSC)等,這些免疫抑制性細胞可分泌免疫抑制性因子,進而構建成一個正反饋的免疫抑制性網絡[9],最終這些分子與細胞共同組成功能復雜的腫瘤免疫抑制性微環境,使腫瘤灶成為抗原特異性T細胞不能發揮作用的“免疫赦免區”。
腫瘤微環境中細胞、分子和細胞因子之間互相影響且機制復雜。其中VEGF作用尤為特殊,其不僅在腫瘤血管生成中扮演了重要角色,而且在腫瘤免疫逃逸的多個環節中發揮重要作用,如DC的成熟[10],誘導成熟DC表達PD-L1,從而影響T細胞活化[11],并且影響CTL的產生[10,12]。
抗腫瘤免疫識別主要依賴于抗原遞呈細胞(anti?gen presenting cell,APC)識別腫瘤抗原,而DC是功能最強大的抗原遞呈細胞,被認為是啟動機體免疫反應的始動者。抗血管生成主要影響DC成熟和功能。Jin等[13]證實低分化食管鱗癌細胞上清可通過STAT3誘導不成熟DC內皮化從而失去抗原遞呈功能,而Pardoll等[11]則證實VEGF可通過誘導成熟DC表達PD-L1,影響DC遞呈抗原的功能。動物實驗和臨床試驗均提示抗VEGF治療可提高成熟DC數目及功能[14],在荷瘤鼠模型和臨床試驗中阻斷VEGF或VEGFR2后均可恢復DC的功能[15]。
T細胞在發揮免疫殺傷作用之前必須經歷由活化引起的細胞分裂,并大量增殖,達到整體功能所需的數量水平;還經歷由活化引起的細胞分化,使其具有分泌細胞因子或細胞殺傷的功能,而抗血管生成在此環節通過影響腫瘤微環境中抑制性細胞和細胞因子調節T細胞的活化。
2.1 抗血管生成藥物對腫瘤微環境中免疫抑制性細胞的影響
2.1.1 TAM是一類免疫抑制性細胞,表達IL-10等免疫抑制性細胞因子;通過與PD-L1結合等方式抑制T細胞活性;還可以通過分泌精氨酸酶影響T細胞受體的作用[16]。在小鼠荷瘤模型中endostatin單藥或聯合腫瘤特異性DC-T細胞均可有效降低腫瘤組織內的免疫抑制性細胞M2型TAM的比例,增加免疫增強M1型TAM的比例[15]。在乳腺癌細胞株中低劑量DC101(VEGFR2抗體)同樣存在調節M2/M1比例的功能[17]。
2.1.2 Treg是一種專職的調節性T細胞亞群,主要通過其免疫無能性和免疫抑制性發揮免疫抑制功能。免疫抑制性表現為Treg細胞可通過分泌IL-10 和TGF-β等免疫抑制性細胞因子影響免疫系統對腫瘤特異性抗原的識別,并影響CD4+T細胞的活化增殖[18]。sunitinib、endostatin、VEGF抗體均可減少腫瘤微環境中Treg及其所分泌的IL-10和TGF-β[19-20]。
2.1.3 MDSC是一類髓系來源的免疫抑制性細胞亞群,活化后的MDSC通過各種機制使得腫瘤逃避機體的免疫監視和攻擊,從而促進其發展。VEGF能夠顯著促進未成熟MDSC的產生[21]。在小鼠荷瘤模型中,endostatin可有效降低腫瘤組織內免疫抑制性細胞MDSC數量[15]。sunitinib、恩度可減少腫瘤微環境中的免疫抑制性細胞MDSC[20]。
2.2 抗血管生成藥物對腫瘤微環境中細胞因子和分子的影響
1)endostatin可下調免疫抑制性細胞因子IL-6、IL-10、TGF-β和IL-17的表達,上調參與溶瘤作用的IFN-β表達[15,22-23]。2)乳腺癌細胞株和口腔鱗癌腫瘤組織中均顯示乏氧條件下程序性死亡分子配體(pro?grammed death ligand,PD-L1)表現為HIF-1α依賴性升高[24-26],HIF-1α可上調Treg細胞標志物Foxp3的表達,并能增強其免疫抑制效應[20]。抗血管生成藥物使用可改善腫瘤微環境乏氧狀態,下調腫瘤微環境中HIF-1α分子[27],從而減少PD-L1的表達以及削弱Treg的免疫抑制效應。
2.3 抗血管生成藥物對腫瘤浸潤淋巴細胞的影響
腫瘤浸潤淋巴細胞(tumor-infiltrating lympho?cyte,TIL)是一類強大的具有高效、特異抗腫瘤免疫活性的細胞群體,主要是由T細胞、B細胞和自然殺傷細胞組成。TIL殺傷腫瘤細胞主要依賴其中的CTL功能有效激活。VEGF通過阻滯TNF-α介導的表皮細胞黏附分子(VCAM)和細胞間黏附分子(ICAM)的表達來阻止T細胞附著于血管壁上,從而導致T細胞不能夠外滲進入腫瘤組織[28-29]。內皮抑素、VEGF抗體、腫瘤血管生成抑制肽均可使腫瘤內皮細胞表面正常表達黏附分子[30],不同腫瘤的體內實驗均表明endostatin、DC101以及sunitinib均可有效增加腫瘤組織內CD8+T細胞浸潤[15,17,31]。
2.4 抗血管生成藥物對PD-1及其配體的影響
PD1和PD-L1為一對重要的負性免疫共刺激分子,PD-L1高表達于多種腫瘤細胞表面,PD-1主要表達于免疫細胞表面[32],經多條信號通路激活后在抗原遞呈過程和T細胞效應過程中影響機體抗腫瘤免疫作用[33]。DC高表達PD-L1時影響其抗原遞呈效應[11],PD-1表達于Treg時,可促進Treg細胞的增殖,并抑制免疫應答[34]。PD1/PD-L1的具體表達調控機制尚未明確,而有研究表明sunitinib可減少CD4+T、CD8+T細胞表面PD-1的表達和MDSC細胞表面PD-L1的表達[22]。
如上所述,針對VEGF/VEGFR類抗血管生成藥物可以促進DC成熟,并增強DC抗原遞呈功能,從而促進T細胞的活化;Treg細胞可通過多種途徑抑制效應T細胞(effector T cell,Teff)功能,而sunitinib、end?ostatin、VEGF抗體等均可通過減少腫瘤微環境中Treg數目間接增強Teff的功能。Kwilas等[35]研究提示卡博替尼(cabozantinib)可明顯提高腫瘤組織周圍的效應T細胞數目。
腫瘤免疫治療是當下的研究熱點,繼2011年FDA批準抗細胞毒性T淋巴細胞相關抗原4(cytotox?ic T lymphocyte-associated antigen-4,CTLA-4)單抗-ipilimumab用于治療晚期黑色素瘤后,開啟了腫瘤靶向免疫治療的大門。2014年11月,FDA批準了PD-1抗體nivolumab用于治療不可切除的或轉移的以及ipilimumab治療后疾病進展的黑色素瘤患者。抗血管生成聯合免疫治療的一系列研究正在開展中,Shi等[36]利用重組人內皮抑素聯合過繼性細胞因子誘導的殺傷細胞(CIK cells)移植處理小鼠肺癌模型。Tao等[37]采用貝伐單抗聯合CIK進行NSCLC體外實驗,兩項實驗均發現抗血管生成可顯著提高TIL從而增強免疫治療的療效。Hodi等[38]采用貝伐單抗聯合ipilimumab治療46例轉移性黑色素瘤患者的臨床試驗,發現聯合治療較ipilimumab單藥可以提高TIL和循環記憶細胞表型,并能增加患者對半乳凝素-1,-3,-9的反應性,從而調節機體免疫。由于抗血管生成治療和免疫治療非直接針對腫瘤細胞產生治療效應,有理由認為在兩者聯合治療的基礎上增加傳統放化療將獲得更大的收益。在多年臨床實踐中發現,放化療不僅可以誘導腫瘤細胞凋亡,還可以改變腫瘤局部血管結構,清除體內抑制性免疫細胞,誘導形成免疫支持性腫瘤微環境[17]。
腫瘤的抗血管生成與機體免疫增強密不可分,腫瘤免疫治療在腫瘤的綜合治療中扮演重要角色。此外,多項研究表明腫瘤免疫抑制性微環境可通過多種機制促進腫瘤血管形成,并且腫瘤微環境中存在復雜正負反饋調節機制,若能發現其中的“始作俑者”,一旦將其阻滯將同時解除免疫抑制并阻止腫瘤血管生成。Teng等[39]提出,根據患者腫瘤組織中PD-1 和TIL的情況可將患者分為四大類,進行“量體裁衣”式的治療。因此,提出合理的個體化聯合治療方案將成為未來腫瘤治療的研究方向。
參考文獻
[1]Miles KM,Seshadri M,Ciamporcero E,et al.Dll4 blockade potentiates the anti-tumor effects of VEGF inhibition in renal cell carcinoma patient-derived xenografts[J].PLoS One,2014,9(11):e112371.
[2]Nasti G,Piccirillo MC,Izzo F,et al.Neoadjuvant FOLFIRI + bevacizumab in patients with resectable liver metastases from colorectal cancer: a phase 2 trial[J].Br J Cancer,2013,108(8):1566-1570.
[3]Li J,Qin S,Xu J,et al.Apatinib for chemotherapy-refractory advanced metastatic gastric cancer: results from a randomized,placebo-controlled,parallel-arm,phase II trial[J].J Clin Oncol,2013,31 (26):3219-3225.
[4]Wilke H,Muro K,Van Cutsem E,et al.Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): a double-blind,randomised phase 3 trial[J].Lancet Oncol,2014,15(11):1224-1235.
[5]Rong BX,Yang SY,Li W,et al.Systematic review and meta-analysis of Endostar(rh-endostatin)combined with chemotherapy versus chemotherapy alone for treating advanced non-small cell lung cancer[J].World J Surg Oncol,2012,10:170.
[6]Hanahan D,Weinberg RA.Hallmarks of cancer: the next generation [J].Cell,2011,144(5): 646-674.
[7]O'Sullivan T,Saddawi-Konefka R,Vermi W,et al.Cancer immunoediting by the innate immune system in the absence of adaptive immunity[J].J Exp Med,2012,209(10):1869-1882.
[8]Vesely MD,Schreiber RD.Cancer immunoediting: antigens,mechanisms,and implications to cancer immunotherapy[J].Ann N Y Acad Sci,2013,1284:1-5.
[9]Motz GT,Coukos G.The parallel lives of angiogenesis and immunosuppression: cancer and other tales[J].Nat Rev Immunol,2011,11 (10):702-711.
[10]Buchroithner J,Pichler J,Marosi C,et al.Vascular endothelia growth factor targeted therapy may improve the effect of dendritic cell- based cancer immune therapy[J].Int J Clin Pharmacol Ther,2014,52(1):76-77.
[11]Pardoll DM.The blockade of immune checkpoints in cancer immunotherapy[J].Nat Rev Cancer,2012,12(4):252-264.
[12]Ziogas AC,Gavalas NG,Tsiatas M,et al.VEGF directly suppresses activation of T cells from ovarian cancer patients and healthy individuals via VEGF receptor Type 2[J].Int J Cancer,2012,130(4):857-864.
[13]Jin G,Zhao J,Yang Y,et al.JAK/STAT3 signaling pathway mediates endothelial-like differentiation of immature dendritic cells[J].Oncol Lett,2015,10(6):3471-3477.
[14]Voron T,Marcheteau E,Pernot S,et al.Control of the immune response by pro-angiogenic factors[J].Front Oncol,2014,4:70.
[15]Li XY,Liang J,Li Y,et al.Antitumor effect of endostatin synergized with tumor special DC-T cellular therapy[J].Journal of Shandong University: Health Sciences,2015,53(7):19-23.[李星宇,梁婧,李巖,等.血管內皮抑素協同腫瘤特異性DC-T細胞的抗腫瘤效應[J].山東大學學報:醫學版,2015,53(7):19-23.]
[16]Tang X,Mo C,Wang Y,et al.Anti-tumour strategies aiming to targettumour-associated macrophages[J].Immunology,2013,138(2):93-104.
[17]Huang Y,Yuan J,Righi E,et al.Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy[J].Proc Natl Acad Sci USA,2012,109(43):17561-17566.
[18]Palomares O,Martín-Fontecha M,Lauener R,et al.Regulatory T cells and immune regulation of allergic diseases: roles of IL-10 and TGF-β[J].Genes Immun,2014,15(8):511-520.
[19]Li S,Li Y,Liang J,et al.The study of clinical application of DC- CIK combined with chemotherapy on colon cancer[J].Chinese Journal of Immunology,2012,28(9):835-839.[李莎,李巖,梁婧,等.DC-CIK聯合化療治療結腸癌的臨床研究[J].中國免疫學雜志,2012,28(9):835-839.]
[20]Tartour E,Pere H,Maillere B,et al.Angiogenesis and immunity: a bidirectional link potentially relevant for the monitoring of antiangiogenic therapy and the development of novel therapeutic combination with immunotherapy[J].Cancer Metastasis Rev,2011,30(1): 83-95.
[21]Huang Y,Goel S,Duda DG,et al.Vascular normalization as an emerging strategy to enhance cancer immunotherapy[J].Cancer Res,2013,73(10):2943-2948.
[22]Ozao-Choy J,Ma G,Kao J,et al.The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune- based cancer therapies[J].Cancer Res,2009,69(6):2514-2522.
[23]Abe F,Younos I,Westphal S,et al.Therapeutic activity of sunitinib for Her2/neu induced mammary cancer in FVB mice[J].Int Immunopharmacol,2010,10(1):140-145.
[24]Noman MZ,Desantis G,Janji B,et al.PD-L1 is a novel direct target of HIF-1alpha,and its blockade under hypoxia enhanced MDSC-mediated T cell activation[J].J Exp Med,2014,211(5):781-790.
[25]Labiano S,Palazon A,Melero I.Immune response regulation in the tumor microenvironment by hypoxia[J].Semin Oncol,2015,42(3): 378-386.
[26]Chen TC,Wu CT,Wang CP,et al.Associations among pretreatment tumor necrosis and the expression of HIF-1alpha and PD-L1 in advanced oral squamous cell carcinoma and the prognostic impact thereof[J].Oral Oncol,2015,51(11):1004-1010.
[27]Matsumoto S,Batra S,Saito K,et al.Antiangiogenic agent sunitinib transiently increases tumor oxygenation and suppresses cycling hypoxia[J].Cancer Res,2011,71(20):6350-6359.
[28]Rivera LB,Bergers G,et al.Intertwined regulation of angiogenesis and immunity by myeloid cells[J].Trends Immunol,2015,36(4): 240-249.
[29]Joyce JA,Fearon DT.T cell exclusion,immune privilege,and the tumor microenvironment[J].Science,2015,348(6230):74-80.
[30]Griffioen AW.Anti-angiogenesis: making the tumor vulnerable to the immune system[J].Cancer Immunol Immunother,2008,57(10): 1553-1558.
[31]Guislain A,Gadiot J,Kaiser A,et al.Sunitinib pretreatment improves tumor-infiltrating lymphocyte expansion by reduction in intratumoral content of myeloid-derived suppressor cells in human renal cell carcinoma[J].Cancer Immunol Immunother,2015,64(10): 1241-1250.
[32]Deng X,Wu CP,Lu BF,et al.The action mechanism of immune checkpoint programmed death ligand-1/ programmed death-1 in cancer immunotherapy[J].Chinese Journal of Experimental Surgery,2015,32(4):934-936.[鄧旭,吳昌平,盧斌峰,等.免疫卡控點程序性死亡分子-1配體/程序性死亡分子-1在腫瘤免疫治療中的作用機制[J].中華實驗外科雜志,2015,32(4):934-936.]
[33]Berry S,Taube JM.Innate Vs.Adaptive: PD-L1-mediated immune resistance by melanoma[J].Oncoimmunology,2015,4(10): e1029704.
[34]Chen X,Fosco D,Kline DE,et al.PD-1 regulates extrathymic regulatory T-cell differentiation[J].Eur J Immunol,2014,44(9):2603-2616.
[35]Kwilas AR,Donahue RN,Tsang KY,et al.Immune consequences of tyrosine kinase inhibitors that synergize with cancer immunotherapy[J].Cancer Cell Microenviron,2015,2(1): e677.
[36]Shi S,Wang R,Chen Y,et al.Combining antiangiogenic therapy with adoptive cell immunotherapy exerts better antitumor effects in non-small cell lung cancer models[J].PLoS One,2013,8(6):e65757.
[37]Tao L,Huang G,Shi S,et al.Bevacizumab improves the antitumor efficacy of adoptive cytokine-induced killer cells therapy in non-small cell lung cancer models[J].Med Oncol,2014,31(1):777.
[38]Hodi FS,Lawrence D,Lezcano C,et al.Bevacizumab plus ipilimumab in patients with metastatic melanoma[J].Cancer Immunol Res,2014,2(7):632-642.
[39]Teng MW,Ngiow SF,Ribas A,et al.Classifying Cancers Based on T-cell Infiltration and PD-L1[J].Cancer Res,2015,75(11):2139-2145.
(2016-03-01收稿)
(2016-04-05修回)
(編輯:邢穎校對:鄭莉)

Research progress on the influence of anti-angiogenetic agents on antitumor immunity regulation
Qingjing LIU,Xiaodong JIANG
Correspondence to: Xiaodong JIANG;E-mail: jxdysy1970@163.com
The Affiliated Lianyungang Hospital of Xuzhou Medical University,Lianyungang 222002,China
AbstractMalignant tumor therapy has entered a new era of "precise treatment." Nowadays,targeted anti-angiogenic agents have become a popular research topic that continues to attract increasing interest.Tumor immune escape plays an indispensable role in therapeutic resistance.Anti-angiogenic therapies not only prevent the tumor angiogenesis and suppress tumor growth but also neutralize tumor escape from a host's immune system by reducing the immunosuppressive cells and increasing the number of tumor-infiltrating lymphocyte(TIL)and cytotoxic lymphocte(CTL).This paper aims to review the mechanism underlying the manner by which anti-angiogenesis enhances immunity by influencing tumor microenvironment.
Keywords:anti-angiogenesis,tumor immune escape;tumor microenvironment
doi:10.3969/j.issn.1000-8179.2016.09.184
通信作者:蔣曉東jxdysy1970@163.com
作者簡介
劉清菁專業方向為腫瘤抗血管生成治療。
E-mail:1961694204@qq.com