明雅南 李春敏 張靜怡 劉曉琳 茅益民
?
·論著·
對乙酰氨基酚誘導的急性肝損傷和肝衰竭模型中線粒體基因組轉錄改變
明雅南李春敏張靜怡劉曉琳茅益民
200001上海交通大學醫學院附屬仁濟醫院消化內科,上海市消化疾病研究所
【摘要】目的通過探索對乙酰氨基酚(APAP)誘導的急性肝損傷和急性肝衰竭模型中線粒體基因組轉錄水平的改變與疾病進展之間的關聯,為AILI預后的預測提供新的生物標記。方法將90只小鼠隨機分為3組:對照組、APAP導致的DILI組(AILI,300 mg/kg)和APAP導致的急性肝衰竭組(AILF,750 mg/kg)。禁食16 h后,腹腔注射體積相近的0.9%氯化鈉溶液和不同劑量APAP,在0、1、3、6、12 h等不同時間點時,每組隨機選取6只小鼠處死,留取小鼠的血漿和肝臟組織。檢測每只小鼠ALT、AST、ROS變化水平; 提取肝臟總RNA,采用RT-PCR技術檢測線粒體基因組基因的轉錄水平。結果與對照組相比,腹腔注射APAP后,兩組均可見轉氨酶明顯升高,AILI組在6-12 h時ALT達到峰值(5 000~10 000 U/L);AILF組12 h時ALT水平超過10 000 U/L,明顯高于AILI組(P<0.05)。APAP處理后,兩組小鼠均可見典型的3區微泡性脂肪變,AILF組可見典型的急性肝衰竭的大塊性壞死。與對照組相比,AILI和AILF組肝臟中ROS從1 h開始,各時間點均可見顯著升高,且1 h時,AILF組ROS的生成量約為AILI組的2.5倍(P<0.05)。AILI組COX1在6 h時顯著升高(P<0.05),而對照組和AILF組均未見顯著升高。與對照組相比,3 h時,AILI組和AILF組可見CYTB、COX2和ATP8顯著降低(P<0.05);6 h時,AILI組和AILF組COX1、ND1、ND5和ATP8轉錄水平顯著降低(P<0.05);12 h時,AILI組和AILF組中NADH各亞基均可見顯著降低(P<0.05)。AILI組與AILF組相比, 6 h時,AILF組中 ATP6的轉錄水平顯著低于AILI組和對照組(P<0.05);12 h時,AILF組的肝臟中CYTB、COX2、ATP8以及NADH的2、3、5和6亞基的轉錄水平顯著低于AILI組(P<0.05)。結論線粒體基因組除COX1在AILI組明顯上調,其他存在明顯改變的基因均出現降低趨勢,且AILF組變化更明顯。線粒體基因組轉錄水平改變對于預測AILI預后有潛在價值。
【關鍵詞】對乙酰氨基酚;肝損傷;肝衰竭;線粒體;轉錄
藥物的肝臟毒性是新藥研發失敗及上市后被撤回最主要的原因之一,盡管藥物導致肝損傷的機制復雜,但線粒體功能損傷是其的重要環節[1,2]。線粒體基因組(mtDNA)位于線粒體內膜上的環狀DNA,是可編碼13種合成線粒體呼吸鏈和氧化磷酸化功能蛋白必備的RNA、rRNA和tRNA,但由于缺少組蛋白保護,而且相對于細胞核DNA對復制和轉錄過程中出現各種錯誤后完善的修復機制,線粒體DNA的修復機制并不完善,導致其更易受到氧化應激產物(ROS)的損傷[3-5],影響線粒體氧化磷酸化功能,進而影響能量生成。有研究提示,血漿中線粒體生物標記物明顯升高與預后不良明顯相關,線粒體結構和功能嚴重受損者,存活率更低[6]。
對乙酰氨基酚(APAP)是最常見的固有型藥物性肝損傷(DILI)的代表藥物,APAP過量應用已成為西方國家急性肝衰的重要原因之一[7]。P450酶代謝產生的毒性產物N-乙酰對苯醌亞胺(NAPQI)造成線粒體結構和功能的損傷,是其主要的發病機制。肝內過多的NAPQI能夠耗竭肝內解毒NAPQI的谷胱甘肽(GSH),并損害線粒體復合體Ⅱ和Ⅲ的酶活性[8-9],最終導致線粒體功能受損,產生大量的ROS。本研究通過構建APAP導致的DILI動物模型(AILI)和急性肝衰竭動物模型(AILF),采用實時PCR技術對兩種具有不同預后的動物模型在不同時間點mtDNA的轉錄水平進行分析,探索mtDNA在DILI的發生發展過程中的變化特點,以發現可以預測疾病預后的潛在生物標記。
資料和方法
一、實驗動物與試劑儀器
90只C57BL/6小鼠購于上海斯萊克動物實驗中心;APAP、戊巴比妥鈉購于sigma公司(美國);全自動生化分析儀(SIEMEN SADVIA 1800,美國);全自動脫水機(ASP300)、石蠟包埋機(EG1150C)、脫蠟機(Auto tainer XL)等均來自于德國Leica公司;Bio-Rad CFX96熒光定量PCR儀(美國);Trizol、Prime Script TM反轉錄試劑盒、SYBR@Premix Ex TaqTM II購于 Takara公司(日本);PCR引物購于上海生工有限公司。
90只小鼠,隨機分為對照組、AILI組和AILF組,每組30只;腹腔分別注射體積相近的0.9%氯化鈉溶液、APAP-300 mg/kg、APAP-750 mg/kg。處理后的動物在0、1、3、6、12 h,每組隨機抽出6只小鼠,麻醉,取血,留取肝臟組織。提取肝臟總RNA,檢測AILI組和AILF組小鼠肝臟組織ROS 的生成量和mtDNA轉錄水平,觀察其隨時間變化的特點。
二、血漿轉氨酶檢測
戊巴比妥鈉麻醉小鼠,抗凝管眼球取血,取血后,3000×g,4℃離心,取上清液,稀釋10倍,檢測小鼠的ALT和AST。
三、ROS檢測
新鮮的肝臟100 mg,用組織清洗液清洗后,用勻漿器制成肝臟勻漿,按照試劑盒說明檢測肝臟勻漿中ROS的產生量,并采用BCA的方法檢測肝臟勻漿的蛋白濃度,校正肝臟內ROS的產量。
四、實時PCR檢測線粒體RNA
TRIZOL試劑盒提取組織總RNA。NanoDrop ND-1000測定RNA的濃度、質量和純度,A260/A280>1.8作為RNA合格的標準,根據 PrimeScript反轉錄試劑盒合成cDNA,然后按照SYBR@Premix Ex Taq II說明擴增線粒體基因,mRNA水平以18S作為內參對照,結果以相對含量表示不同基因的轉錄水平。
五、統計學分析
統計分析應用SPSS 19.0軟件,作圖應用GraphPad Prime 6.01軟件。計量資料用均數±標準差表示,組間比較采用t檢驗,P<0.05為差異有統計學意義。
結果
一、動物模型建立
與對照組相比,腹腔注射APAP后,AILI組和AILF組均可見轉氨酶明顯升高,AILI組在6~12 h時ALT達到高峰(5 000~10 000 U/L);AILF組12 h時ALT水平超過10 000 U/L,明顯高于AILI組(P<0.05)。見圖1。12 h時,AILF組肝臟組織學可見典型的急性肝衰竭表現-大塊性肝壞死,病變周圍細胞也表現為明顯的彌漫性的肝細胞變性;AILI組損傷范圍局限,損傷周圍的肝細胞形態結構正常。上述組織學特點提示,APAP誘導的AILI和AILF造模成功。
二、ROS的表達變化
與對照組相比,APAP處理后1 h,AILI組和AILF組可見肝內ROS生成均明顯增多,且AILF組約為AILI組2.5倍(P<0.05),兩組肝內ROS均隨時間延長,含量越高(P<0.05)。見表1。
三、線粒體基因組轉錄水平變化
各組mtDNA檢測結果顯示AILI組COX1在6 h時顯著升高(P<0.05),而對照組和AILF組均未見顯著升高。與對照組相比,3 h時,AILI組和AILF組可見CYTB、COX2和ATP8顯著降低(P<0.05);6 h時,AILI組和AILF組COX1、ND1、ND5和ATP8轉錄水平顯著降低(P<0.05);12 h時,AILI組和AILF組中NADH各亞基均可見顯著降低(P<0.05)。AILI組與AILF組相比, 6 h時,AILI組COX1顯著高于AILF組(P<0.05),AILF組中ATP6的轉錄水平顯著低于AILI組和對照組(P<0.05);12 h時,AILF組的肝臟中CYTB、COX2、ATP8以及NADH的2、3、5和6亞基的轉錄水平顯著低于AILI組(P<0.05)。見表2,表3。

注:AILI組和AILF組與對照組比較*P<0.05;AILI組和AILF組比較§P<0.05。

組別0h1h3h6h12h對照組927.02±183.471013.68±23.37993.68±141.48936.68±128.03977.35±42.11AILI組1060.35±162.721739.15±655.62*3519.14±806.51*4069.00±1046.64*6371.32±1910.92*AILF組993.68±262.374518.59±913.71*§4061.37±422.22*5015.99±654.29*5555.80±977.36*
討論
AILI發生過程中,線粒體氧化應激并生成ROS[10],損傷線粒體蛋白和DNA,并導致線粒體膜通透性轉變孔(mitochondrial membrane permeability transition,MPT)開放,MPT的發生最終導致線粒體膜電位改變、ATP生成中斷,胞內離子穩態平衡被打破,肝細胞腫脹壞死。因此,線粒體結構和功能損傷是DILI早期重要的發病機制[11,12]。mtDNA是線粒體內重要的組成成分,能夠編碼表達13種呼吸鏈復合體的必需蛋白,其數量減少和功能改變可能直接影響肝細胞代謝狀態及存活[13]。

表2 不同組別各時間點NADH亞基中線粒體編碼基因的轉錄水平
注:*:與對照組比較,P<0.05;§:與AILI組比較,P<0.05

表3 CYTB、COX以及ATP等線粒體編碼基因的轉錄水平
注:*:與對照組比較,P<0.05;§:與AILI組比較,P<0.05
本研究結果顯示,腹腔注射不同劑量APAP后,早期即可見ROS明顯升高,且衰竭組明顯高于損傷組。線粒體是ROS產生的主要細胞器,mtDNA由于無組蛋白保護,而且相對于細胞核DNA對復制和轉錄過程中出現各種錯誤后完善的修復機制,線粒體DNA的修復機制并不完善,過量ROS使其更易受損傷。Suliman等[14]的研究發現,氧化應激可能是mtDNA損傷的原因,嚴重的mtDNA損傷,會進一步減少ATP的生成,并增加ROS在肝內的累積,因此,本研究中觀察到的AILI和AILF組中ROS明顯增加,與既往的研究報道一致。
從mtDNA的轉錄水平變化來看,除AILI組COX1的轉錄升高,其他差異表達的mtDNA的轉錄水平均表現為降低趨勢,并隨時間延長更為明顯。本研究中發現肝臟組織中mtDNA轉錄水平明顯降低可能與預后不良密切相關,推測急性肝衰竭時肝臟組織中mtDNA大量釋放入血后導致的血漿mtDNA明顯升高,可以作為預測預后的潛在生物標記,循環中高水平的mtDNA與AILI患者預后不良密切相關。
有研究發現,mtDNA降低20%~40%就會直接影響線粒體功能,持續mtDNA減少能夠降低線粒體呼吸鏈NAD+ FAD的再生功能,最終影響脂質和丙酮酸鹽氧化并產生大量的ROS[15,16]。
長期高脂飲食以及急性酒精性肝損傷模型均出現mtDNA減少和損傷[17,18]。ROS對mtDNA的直接損傷導致正常mtDNA發生突變,以及細胞膜裂解后將mtDNA釋放到血液循環可能是導致AILI動物模型中mtDNA減少的重要因素。釋放的mtDNA可作為配體活化TLR9,引起NASH肝臟的炎性反應[19]。另外有研究認為,mtDNA作為損傷相關模式分子激活DILI的無菌性炎性反應[20]。從上述針對其他肝病的證據來看,mtDNA的減少不僅是疾病發生早期重要的機制,也可能是導致疾病進展的關鍵因素之一。相反,通過藥物改善肝臟內mtDNA的水平可能阻斷毒物引起的肝衰竭[21]。
本研究僅對AILI和AILF發生過程中mtDNA的轉錄水平改變進行相應研究,并未對其原因進行深入的探討,而mtDNA轉錄降低是由于數量的減少還是刺激導致其異常突變,還需要通過更多的實驗提供證據。此外,肝臟組織中mtDNA轉錄水平降低的程度對于預測疾病預后具有潛在的價值,但尚需要更多研究加以驗證。COX1在AILI組的變化趨勢與其他mtDNA明顯不一致,可能與線粒體及肝細胞的適應性反應有關,對于COX1在不同疾病和生理過程中的作用和意義還需進一步的實驗證實。
本研究描述了AILI和AILF發生和發展過程中mtDNA轉錄水平隨時間變化的特點,結果提示,mtDNA轉錄水平變化差異可能具有預測預后的價值,但其轉錄改變機制還需要更多的基礎和臨床研究加以證實。
參考文獻
[ 1 ]Lee WM. Drug-induced hepatotoxicity. N Engl J Med, 2003,349:474-485.
[ 2 ]Lee KK, Imaizumi N, Chamberland SR, et al. Targeting mitochondria with methylene blue protects mice against acetaminophen-induced liver injury. Hepatology,2015,61:326-336.
[ 3 ]Inoue JG, Miya M, Tsukamoto K, et al. Complete mitochondrial DNA sequence of Conger myriaster (Teleostei: Anguilliformes): novel gene order for vertebrate mitochondrial genomes and the phylogenetic implications for anguilliform families. J Mol Evol,2001,52:311-320.
[ 4 ]Dianov GL, Souza-Pinto N, Nyaga SG, et al. Base excision repair in nuclear and mitochondrial DNA. Prog Nucleic Acid Res Mol Biol,2001,68:285-297.
[ 5 ]Demeilliers C, Maisonneuve C, Grodet A, et al. Impaired adaptive resynthesis and prolonged depletion of hepatic mitochondrial DNA after repeated alcohol binges in mice. Gastroenterology,2002,123:1278-1290.
[ 6 ]McGill MR, Staggs VS, Sharpe MR, et al. Serum mitochondrial biomarkers and damage-associated molecular patterns are higher in acetaminophen overdose patients with poor outcome. Hepatology,2014,60:1336-1345.
[ 7 ]Larsen FS, Wendon J. Understanding paracetamol-induced liver failure. Intensive Care Med,2014,40:888-890.
[ 8 ]Ramsay RR, Rashed MS, Nelson SD. In vitro effects of acetaminophen metabolites and analogs on the respiration of mouse liver mitochondria. Arch Biochem Biophys,1989,273:449-457.
[ 9 ]Burcham PC, Harman AW. Acetaminophen toxicity results in site-specific mitochondrial damage in isolated mouse hepatocytes. J Biol Chem 1991;266:5049-5054.
[10]Arduini A, Serviddio G, Escobar J, et al. Mitochondrial biogenesis fails in secondary biliary cirrhosis in rats leading to mitochondrial DNA depletion and deletions. Am J Physiol Gastrointest Liver Physiol,2011,301:G119-127.
[11]Jaeschke H, McGill MR, Ramachandran A. Oxidant stress, mitochondria, and cell death mechanisms in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity. Drug Metab Rev,2012,44:88-106.
[12]Hinson JA, Roberts DW, James LP. Mechanisms of acetaminophen-induced liver necrosis. Handb Exp Pharmacol,2010,369-405.
[13]Crompton M. The mitochondrial permeability transition pore and its role in cell death. Biochem J,1999,341 ( Pt 2):233-249.
[14]Suliman HB, Carraway MS, Piantadosi CA. Postlipopolysaccharide oxidative damage of mitochondrial DNA. Am J Respir Crit Care Med 2003;167:570-579.
[15]Igoudjil ABK, Pessayre D, Fromenty B. Mitochondrial, metabolic and genotoxic effects of antiretroviral nucleoside reverse-transcriptase inhibitors. Curr Med Chem,2006,5.273-292.
[16]Velsor LW, Kovacevic M, Goldstein M, et al. Mitochondrial oxidative stress in human hepatoma cells exposed to stavudine. Toxicol Appl Pharmacol,2004,199:10-19.
[17]Yuzefovych LV, Musiyenko SI, Wilson GL, et al. Mitochondrial DNA damage and dysfunction, and oxidative stress are associated with endoplasmic reticulum stress, protein degradation and apoptosis in high fat diet-induced insulin resistance mice. PLoS One,2013,8:e54059.
[18]Mansouri A, Demeilliers C, Amsellem S, et al. Acute ethanol administration oxidatively damages and depletes mitochondrial DNA in mouse liver, brain, heart, and skeletal muscles: protective effects of antioxidants. J Pharmacol Exp Ther,2001,298:737-743.
[19]Garcia-Martinez I, Santoro N, Chen Y, et al. Hepatocyte mitochondrial DNA drives nonalcoholic steatohepatitis by activation of TLR9. J Clin Invest,2016,126:859-864.
[20]Kubes P, Mehal WZ. Sterile inflammation in the liver. Gastroenterology, 2012,143:1158-1172.
[21]Bottani E, Giordano C, Civiletto G, et al. AAV-mediated liver-specific MPV17 expression restores mtDNA levels and prevents diet-induced liver failure. Mol Ther,2014,22:10-17.
(本文編輯:錢燕)
基金項目:“十二五”科技重大專項(2012ZX09303-001,2012ZX09401004)
通信作者:茅益民,Email:maoym11968@163.com
Corresponding author:MAO Yi-min, Email: maoym11968@163.com
(收稿日期:2016-04-13)
The transcriptional change of mitochondrial genome in mice models for acetaminophen-induced acute liver injury and failure
MINGYa-nan,LIChun-min,ZHANGJing-yi,LIUXiao-lin,MAOYi-Min.DivisionofGastroenterologyandHepatology,RenjiHospital,SchoolofMedicine,ShanghaiJiaoTongUniversity,ShanghaiInstituteofDigestiveDisease,Shanghai200001,China
【Abstract】ObjectiveTo explore the relationship between transcription level of mitochondrial DNA (mtDNA) and disease progression in the mice models of acetaminophen (APAP)- induced acute liver injury (AILI) and acute liver failure (ALF), and to find the relative new biomarkers for outcome. MethodsNinety mice were randomly divided into three groups, including control group, AILI group (300 mg/kg) and ALF group (750 mg/kg). After fasting 16 h, all mice were intraperitoneally injected with same volume of saline or different doses of APAP. At different time points of 0, 1, 3, 6 and 12 h, 6 mice randomly selected from each group were sacrificed for blood and liver, respectively. Plasma alanine aminotransferase (ALT), aspartate aminotransferase (AST) and reactive oxygen (ROS) levels were detected, and liver total RNA was extracted for RT-PCR to detect changes in transcription of mitochondrial genome. ResultsCompared with the control group, ALT and AST levels in AILI and ALF group were significantly increased. In AILI group, ALT peaked at 6-12 h (5000-10000 IU/L), and ALT exceeded 10000 IU/L at 12 h in ALF group, which showed significantly difference (P<0.05). Microbubbles steatosis in three zones was observed in both AILI and ALF groups, and massive hepatic necrosis (MHN) were found merely in ALF group. In 1 h after APAP injection, ROS in ALF group was about 2.5 times as much as that in AILI group, which significantly increased at all time points in both group. Contrasting with control and ALIF groups, COX1 transcriptional level in AILI group increased significantly at 6 h. In AILI and ALF group, CYTB, COX2 and ATP8 reduced significantly at 3 h (P<0.05), COX1,ND1,ND5 and ATP8 significantly decreased at 6 h (P<0.05), and transcription level of other subunits of NADH significantly decreased at 12 h (P<0.05) comparing with those in control group. Furthermore, ATP6 at 6h in ALF group was obviously lower than that in AILI and control group (P<0.05). At 12 h, the majority of mtDNA (CYTB, COX2, ATP8, ND2, ND3, ND5 and ND6 ) had significant differences between AILI and ALF group. ConclusionThere are significant difference in mtDNA transcription between AILI and ALF groups. Besides COX1, other mtDNA showed significant decreases in AILI and ALF group compared with those in control group, especially in ALF group. mtDNA transcriptional changes may have great potential as biological makers to predict outcomes of AILI.
【Key words】APAP; Liver injury; Liver failure; Mitochondrial; Transcription