999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

On the Study of Some Twisted Deformative Schr?dinger Virasoro Algebra

2016-07-31 23:19:20TANGJiaGAOShoulanGUHaixia
湖州師范學院學報 2016年4期
關鍵詞:研究

TANG Jia,GAO Shoulan,GU Haixia

(School of Science,Huzhou University,Huzhou 313000,China)

On the Study of Some Twisted Deformative Schr?dinger Virasoro Algebra

TANG Jia,GAO Shoulan,GU Haixia

(School of Science,Huzhou University,Huzhou 313000,China)

In this paper,we study a kind of twisted deformative Schr?dinger-Virasoro Lie algebra with two parameters.The calculation of all the derivations of certain 1-dimensional center extension of the Lie algebra proves that the Lie algebra has 7 outer derivations.The result will be helpful to further study the representation theory of this Lie algebra.

Schr?dinger-Virasoro Lie algebra;central extension;derivation

MSC 2000:17B40

0 Introduction

The infinite-dimensional Schr?dinger Lie algebra and Virasoro algebra are of great implications in many fields of mathematics and physics.In 1994,Henkel introduced the Schr?dinger-Virasoro Lie algebra[1].Then many generations and extensions of the Schr?dinger-Virasoro Lie algebra appear and they are studied extensively.The twisted deformative Schr?dinger-Virasoro Lie algebra Lλ,μover the complex field was introduced in[2]as follows:for complex numbersλ,μ,the vector space Lλ,μhas a basis{Ln,Mn,Yn|n∈Z}with the following Lie brackets:

and others are zero.2-cocycles of all the Lie algebras Lλ,μwere determined in[3].According to Theorem 2.1 in[3],we have the one-dimensional central extension of L,forμ?Z,λ∈C.For simpliciλμty,denote the Lie algebra by S.That is,the Lie algebra S has a basis{ Ln,Mn,Yn,C1n∈Z}equipped with the Lie brackets:

and others are zero,where m,n∈Z andμ?1Z. 3

Throught the paper,denote the set of integers,the complex field and the set of nonzero complex numbers by Z,C and C*,respectively.All the vector spaces are assumed over the complex field.

1 The derivations of S

Definition 1.1[4]Let g be a Lie algebra,V a g-module.A linear map D:g→V is called a derivation,if for any x,y∈g,we have D[ x,y]=x.D( y)-y.D(x).If there exists some v∈V such that D:x?xv.,then D is called an inner derivation.

Let g be a Lie algebra,V a module of g.Denote by Der( g,V)the vector space of all derivations,Inn( g,V)the vector space of all inner derivations[4].Set

Denote by Der(g)the derivation algebra of g,Inn( g)the vector space of all inner derivations of g.

Definition 1.2[4]Let G be a commutative group,a G-graded Lie algebra.A g module V is called G-graded,if

In this section,we will determine the derivation algebra of S.

It is easy to see that S is finitely generated.Define a Z-grading on S by

By Proposition 1.1 in[4],we have the following lemma.

Theorem 1.4

and others are zero.

Theorem 1.5 H1(S,S).That is,the derivation algebra of S is

2 Proof of Theorem 1.4

Proof For any m∈Z,D∈(Der S)m,by Lemma 1.3,we can assume

where a1(n),a2(n),a3(n),x11,b1(n),b2(n),b3(n),x12,c1(n),c2(n),c3(n),x13,y∈C.

By D[Li,Mj]=[D(Li),Mj]+[Li,D(Mj)],we can get

From D[Li,Yj]=[D(Li),Yj]+[Li,D(Yj)],we can obtain

By D[Yi,Yj]=[D(Yi),Yj]+[Yi,D(Yj)],we have

Case 1 m=0.Letting i=0 in(1)~(13),we can obtain

for all j∈Z.

Let j=-i in(1)and use(17),and then we haveLet j=1,i=2 and j=3,i=2 in(1)respectively.Then we get a1(3)=a1(1)+a1(2)and a1(5)=a1(3)+a1(2).So a1(2)=2a1(1).Leting j=0 in(1)and using induction on i,we have

Letting j=-i in(4)and(17),we have y=0.Letting j=0 in(30),we get

Subcase 1.1 If there exists some n0∈Z such that 2μ-n0λ=0.Sinceμ≠0,we have n0≠0.Let j=0 in(6),and then we have(2μ-λi)[b2(i)-a1(i)-b2(0)]=0.Hence

Letting i=j=n0in(6),we get b2(2n0)=a1(n0)+b2(0).According to(19),we can obtain b2(n0)= n0a1(1)+b2(0).So b2(i)=a1(i)+b2(0)=ia1(1)+b2(0)for all i∈Z.By(18),we have

Letting j=-i≠0 in(14)and using(20),

Subcase 1.2 2μ-nλ≠0 for all n∈Z.Letting j=0 in(6),we have b2(i)=ia1(1)+b2(0)for all i∈Z.By(18),we have

Letting j=-i≠0 in(14)and using(21),we can obtainTherefore,

Therefore,by Subcase 1.1 and Subcase1.2,we always have Hence

Thus we obtain

So Der S()0=Inn S()0⊕CD-1⊕CD-2⊕CD-3.

Case 2 m≠0.Let i=0 in(1)~(16).Then we have

①λ≠0,-1,-2.Let j=0 in(31).Then we get a2(0)=0.Let j=-i in(31).Then we have

Let j=1,i=-2 in(31).and then we obtain a22()=2a21().Let i=1 in(31)and use induction on j>1,and then we can get that a2j()=ja21()for all j∈Z.Hence,we have D(Mn)=D(C1)=0 and

②λ=0.By(32)and(24),we have

Then(31)becomes

Let i=1,and then we have(j-1)a2(1+j)=-a2(1)+ja2j().Hence we have

Let i=-j in(34),and then we get

Let j=-2 in(35),ang then we obtain a20()=2a21()-a2(0).So

Thus we have D(Mn)=D(C1)=0 and

Set a1=a2(1)-a2(0),a2=a2(0).Then we can check.So

③λ=-1.By(31)~(33),we have

Let i=1 in(36).Then we have(j-1)a2(1+j)=-j+1()a2(1)+j+1()a2j().So we can deduce

Hence D(Mn)=D(C1)=0 and

④λ=-2.By(31)~(33),we have

Let i=1 in(37),and then we have

Use induction on j>1,and then we can deduce

Let j=0 in(38),and then we get a2(0)=0.Let j=-i in(38),and then we get a2(-i)=-a2(i)for all i∈Z.Then we canall j∈Z.Hence

[1]HENKEL M.Schr?dinger invariance and strongly anisotropic critical systems[J].Journal of Statistical Physics,1994,75(5/6):1 023-1 061.

[2]ROGER C,UNTERBERGER J.The Schr?dinger-Virasoro Lie group and algebra:representation theory and cohomological study[J].Ann Henri Poincare,2006,7(7-8):1 477-1 529.

[3]LI J.2-cocycles of twisted deformative Schr?dinger-Virasoro algebras[J].Comm Algebra,2012,40(6):1 933-1 950.

[4]FARNSTEINER R.Derivations and extensions of finitely generated graded Lie algebras[J].J Algebra,1988,118(1):34-35.

[5]JIANG C,MENGD.The derivations,algebra of the associative algebra Cq[X,Y,X-1,Y-1][J].Comm Algebra,1998,6(2):1 723-1 736.

[6]BENKART G,MOODY R.Derivations,central extensions and affine Lie algebras[J].Algebras Groups Geom,1986,3(4):456-492.

一類扭形變Schr?dinger-Virasoro代數的研究

唐 佳,高壽蘭,顧海霞
(湖州師范學院理學院,浙江湖州313000)

研究了一類含有兩個參數的扭形變Schr?dinger-Virasoro李代數,計算了這類李代數的一維中心擴張的所有導子,證明它有7個外導子.此結果為繼續研究這個李代數的表示理論提供了依據.

Schr?dinger-Virasoro李代數;中心擴張;導子

O152.5

O152.5 Document code:A Article ID:1009-1734(2016)04-0007-07

[責任編輯 高俊娥]

Received date:2016-03-05

s:Supported by National Nature Science Foundation(11201141,11371134)and Natural Science Foundation of Zhejiang Province(LQ12A01005,LZ14A010001).

Biography:Gao Shoulan,Doctor,Research Interests:Lie algebra.E-mail:gaoshoulan@hutc.zj.cn

MSC 2000:17B40

猜你喜歡
研究
FMS與YBT相關性的實證研究
2020年國內翻譯研究述評
遼代千人邑研究述論
視錯覺在平面設計中的應用與研究
科技傳播(2019年22期)2020-01-14 03:06:54
關于遼朝“一國兩制”研究的回顧與思考
EMA伺服控制系統研究
基于聲、光、磁、觸摸多功能控制的研究
電子制作(2018年11期)2018-08-04 03:26:04
新版C-NCAP側面碰撞假人損傷研究
關于反傾銷會計研究的思考
焊接膜層脫落的攻關研究
電子制作(2017年23期)2017-02-02 07:17:19
主站蜘蛛池模板: 日韩123欧美字幕| 热九九精品| 9久久伊人精品综合| 99久久精彩视频| 欧美高清视频一区二区三区| 欧美另类视频一区二区三区| 一区二区自拍| 国产区免费精品视频| 五月婷婷中文字幕| 在线毛片网站| 老司机午夜精品视频你懂的| 亚洲无线一二三四区男男| 中国一级毛片免费观看| 精品91视频| 国产高清在线观看| 国产精品极品美女自在线网站| 国产丝袜精品| 亚洲无限乱码| 精品国产电影久久九九| 日韩av在线直播| 久草视频福利在线观看| 97人人模人人爽人人喊小说| 欧美亚洲国产日韩电影在线| 九九视频免费在线观看| 亚洲水蜜桃久久综合网站| а∨天堂一区中文字幕| 经典三级久久| 蜜桃视频一区| 色综合国产| 亚洲中文在线视频| 欧美日韩在线第一页| 国产美女叼嘿视频免费看| 欧美亚洲国产视频| 日本不卡在线视频| 欧美成人午夜在线全部免费| 国产福利小视频高清在线观看| 992tv国产人成在线观看| 久久这里只精品国产99热8| 亚洲A∨无码精品午夜在线观看| 9999在线视频| 国产亚洲精品在天天在线麻豆| 久久黄色视频影| 午夜小视频在线| 国产在线视频二区| 国产精品尤物在线| 亚洲动漫h| 日韩乱码免费一区二区三区| 欧美黄色网站在线看| AV不卡国产在线观看| 国产精品人人做人人爽人人添| 成人福利在线观看| 亚洲欧美日韩动漫| 亚洲精品午夜无码电影网| 国产成人精品亚洲77美色| 人妻无码中文字幕第一区| 国产午夜无码片在线观看网站| 亚洲欧美国产五月天综合| 亚洲国产日韩欧美在线| 色婷婷成人网| 精品国产香蕉在线播出| 54pao国产成人免费视频 | 人妻熟妇日韩AV在线播放| 久久国产精品国产自线拍| 欧美在线精品怡红院| 日韩国产黄色网站| 无码视频国产精品一区二区| 免费一级无码在线网站| 国产精品妖精视频| 国产精品尤物在线| 波多野结衣AV无码久久一区| 亚洲av成人无码网站在线观看| 影音先锋丝袜制服| 2022国产无码在线| jizz在线观看| 国产精品永久久久久| 久久精品国产999大香线焦| 凹凸精品免费精品视频| 在线精品亚洲国产| 精品一区二区三区中文字幕| 99热亚洲精品6码| 国产亚洲精品自在线| 国产在线拍偷自揄观看视频网站|