徐菊萍
?
萬物皆有聯系
徐菊萍
你是否會遇到這樣的怪事:兩個看似互不相干的事物,卻被同一個奇異的結果緊密聯系在一起.數學,就有這樣的魅力,比如a2+b2表示點(a,b)到原點距離的平方,也可以表示邊長為a、b的正方形的面積和.數學是一門通用語言,是跨越空間與時間的通道.下面我們要講述的幾個相似的問題,就發生在不同的民族,不同的地區,不同的時間里……
1858年,一個叫萊因特的英國人得到了一部古代手稿.這部手稿出土于古埃及首都的廢墟里,這是一份埃及僧侶阿默士(Ahmes,約公元前1700~前1100年期間)撰寫的古老的數學文獻,后來人們稱這本書叫《萊因特紙草書》.
《萊因特紙草書》一部分
書中共有 85個數學問題,其中,最有名的是第 79題:給出了 5個數:“7、49、343、2401、16807”.在這些數的旁邊依次有“人、貓、老鼠、大麥、量器”等字樣.
第79題原文
這道題究竟是什么意思呢?
著名數學史專家康托爾經研究認為:“有7個人,每人養了7只貓,每只貓吃7只老鼠,每只老鼠吃7棵麥穗,每棵麥穗可以長成7個量器的大麥,問各有多少?”這就是說,這5個數就是這個問題的答案.
這5個數有一個很奇特的性質:都是7的各次冪,7、49、343、2401、16807分別是71、72、73、74、75.
有趣的是,在萊因特紙草書出土之前600多年,有位叫斐波拉契的意大利數學家,曾編了一道與這題非常相似的數學題:“7位老太太一起到羅馬去,每人有7匹騾子,每匹騾子馱7個口袋,每個口袋盛7個面包,每個面包有7把小刀,每把小刀有7個刀鞘.問各有多少?”
更有趣的是,比斐波拉契還早幾百年,我國古代書籍里也記載了一道很相似的題目:“今有出門望九堤,堤有九木,木有九枝,枝有九巢,巢有九禽,禽有九雛,雛有九毛,毛有九色.問各幾何?”
這類問題,在19世紀初又以歌謠體出現在算術書中:
“我赴圣地愛弗西,
途遇婦女數有七,
一人七袋手中提,
一袋七貓數整齊,
一貓七子緊相依,
婦與布袋貓與子,
幾何同時赴圣地?”
此外,俄羅斯民間也流傳著一首歌謠:“路上走著7個老漢,每人手里拿著7根竹竿,每根竹竿上有 7個枝丫,每個枝丫上掛著7只竹籃,每只竹籃里有 7個竹籠,每個竹籠里有7只麻雀.總共有多少只麻雀?”
古代數學瑰寶真可謂精彩紛呈,同一個數學問題又可以流轉在不同的時空,真可算是數學奇觀!
(作者單位:南京師范大學附屬蘇州石湖中學)